Niranjan Khadka, PhD

Niranjan Khadka

Dr. Khadka is a biomedical engineer and researcher with over 10 years of experience in neuroengineering and neuromodulation. He earned his PhD from City University of New York under Prof. Marom Bikson. His research focuses on electrical stimulation methods for therapy, improving neurotechnology design, and translating technology to market. Dr. Khadka has expertise in computational FEM modeling, device characterization, system feature design, image and signal processing, clinical collaboration, manuscript publishing, grant writing, patent drafting, and navigating regulatory requirements. He continues to advance neuroengineering through innovative research and dedication to therapeutic technologies.



Resources


Education

Post-doctoral Research Fellow, Department of Psychiatry, Division of Neuropsychiatry and Neuromodulation, Harvard Medical School and Massachusetts General Hospital (2020- 2022)

PhD. Biomedical Engineering, City University of New York, City College of New York (2020)


Publications

2024

Khadka, N., Deng, Z, Lisanby, S, Bikson, M, Camprodon, J. Computational Models of High-Definition Electroconvulsive Therapy for Focal or Multitargeting Treatment. The Journal of ECT. 2024. DOI: 10.1097/YCT.0000000000001069 PDF

Farahani, F., Khadka, N., Parra, L., Bikson, M., Vöröslakos. (2024) Transcranial electric stimulation modulates firing rate at clinically relevant intensities. Brain Stimulation. https://doi.org/10.1016/j.brs.2024.04.007 PDF

Silva-Filho, E., Bikson, M., Gebodh, N., Khadka, N., Santos, A.,Pegado, R., Brasileiro-Santos, M. (2024) A pilot randomized controlled trial of transcranial direct current stimulation adjunct to moderate-intensity aerobic exercise in hypertensive individuals. Frontiers in Neuroergonomics. https://doi.org/10.3389/fnrgo.2024.1236486

2023

Khadka, N., Poon, C., Cancel, L. M., Tarbell, J. M., & Bikson, M. (2023). Multi-scale multi-physics model of brain interstitial water flux by transcranial Direct Current Stimulation. Journal of Neural Engineering, 20(4), 046014. https://doi.org/10.1088/1741-2552/ace4f4 PDF

Rajagopalan, N.R., Vista, W.R., Fujimori, M., Vroomen, LGPH., Jiménez, J.M., Khadka, N., Bikson, M., Srimathveeravalli, G. Cytoskeletal Remodeling and Gap Junction Translocation Mediates Blood–Brain Barrier Disruption by Non‑invasive Low‑Voltage Pulsed Electric Fields. Annals of Biomedical Engineering. 2023. Springer Nature. https://doi.org/10.1007/s10439-023-03211-3. PDF

2022

Khadka N., Bikson M. (2022) Noninvasive Electrical Brain Stimulation of the Central Nervous System. Handbook of Neuroengineering. Springer Nature. doi.org/10.1007/978-981-15-2848-4_59-1 PDF

Zannou, A. L., Khadka, N., & Bikson, M. (2022). Bioheat Model of Spinal Column Heating During High-Density Spinal Cord Stimulation. Neuromodulation: Technology at the Neural Interface. https://doi.org/10.1016/j.neurom.2022.07.006 PDF

Baker, T. S., Zannou, A. L., Cruz, D., Khadka, N., Kellner, C., Tyc, R., Bikson, M., & Costa, A. (2022). Development and Clinical Validation of a Finite Element Method Model Mapping Focal Intracranial Cooling. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 1–1. https://doi.org/10.1109/TNSRE.2022.3161085 PDF

Cardoso, L., Khadka, N., Dmochowski, J. P., Meneses, E., Lee, K., Kim, S., Jin, Y., & Bikson, M. (2022). Computational modeling of posteroanterior lumbar traction by an automated massage bed: Predicting intervertebral disc stresses and deformation. Frontiers in Rehabilitation Sciences, 3. https://doi.org/10.3389/fresc.2022.931274 PDF

Dmochowski, J.P., Khadka, N., Cardoso, L., Meneses, E., Lee, K., Kim, S., Jin, Y., Bikson, M. (2022). Computational Modeling of Deep Tissue Heating by an Automatic Thermal Massage Bed: Predicting the Effects on Circulation. Frontiers in Medical Technology. https://doi.org/10.3389/fmedt.2022.925554 PDF

2021

Khadka, N., Bikson, M. (2021). Transcranial Electrical Stimulation (tES). The NeuroTech Primer: A Beginner’s Guide to Everything Neurotechnology, NeuroTechX. 109-125, ISBN: 979-8454254056 PDF

Truong, D. Q., Khadka, N., Peterchev, A. V. & Bikson, M. (2021) Transcranial electrical stimulation devices. The Oxford Handbook of Transcranial Stimulation, Second Edition. Oxford University Press. 2: 2 -55. https://doi.org/10.1093/oxfordhb/9780198832256.013.2 PDF

Kreisberg, E., Esmaeilpoura, Z., Adair D., Khadka, N., Datta, A., Badran. B.W., Douglas Bremner, J., Bikson, M. (2021) High-resolution computational modeling of the current flow in the outer ear during transcutaneous auricular Vagus Nerve Stimulation (taVNS). Brain Stim. 14: 1419 -1430. https://doi.org/10.1016/j.brs.2021.09.001

Jones A P., Goncalves-Garcia M, Gibson B, Trumbo M C.S., Coffman B A., Robert B, Gill H A., Mullins T, Hunter M A., Robinson C S.H., Combs A, Khadka N, Bikson M, Clark V P. (2021) Investigating the brain regions involved in tDCS-Enhanced category learning using finite element modeling. Neuroimage: Reports. 1(4): 100048. https://doi.org/10.1016/j.ynirp.2021.100048 PDF

Unal, G, Swami, J.K, Canela, C, Cohen, S.L., Khadka, N, FallahRad, M, Short, B, Argyelan, M, Sackeim, H.A, & Bikson, M (2021 )Adaptive current-flow models of ECT: Explaining individual static impedance, dynamic impedance, and brain current density. Brain Stimul. 14(5):1154-1168. https://doi.org/10.1016/j.brs.2021.07.012 PDF

2020

Khadka N, & Bikson M. 2020. Neurocapillary-modulation. Neuromodulation: Technology at the Neural Interface. https://doi.org/10.1111/ner.13338 PDF

Khadka N, Bikson M. 2020. Role of skin tissue layers and ultra-structure in transcutaneous electrical stimulation including tDCS. Physics in Medicine and Biology. https://doi.org/10.1088/1361-6560/abb7c1. PDF

Khadka N, Bikson M. 2020. Neurovascular-modulation. bioRxiv. https://doi.org/10.1101/2020.07.21.214494. PDF

Khadka, N., Liu, X., Zander, H., Swami, J., Rogers, E., Lempka, S., Bikson, M., 2020. Realistic anatomically detailed open-source spinal cord stimulation (RADO-SCS) model. Journal of Neural Engineering. https://doi.org/10.1088/1741-2552/ab8344. PDF

Khadka N, Harmsen IE, Lozano AM, Bikson M. 2020. Bio‐Heat Model of Kilohertz‐Frequency Deep Brain Stimulation Increases Brain Tissue Temperature. Neuromodulation. https://doi.org/10.1111/ner.13120. PDF

Shin DW, Fan J, Luu E, Khalid W, Xia Y, Khadka N, Bikson M, Fu BM. In Vivo Modulation of the Blood–Brain Barrier Permeability by Transcranial Direct Current Stimulation (tDCS). Annals of Biomedical Engineering 2020. https://doi.org/10.1007/s10439-020-02447-7. PDF

2019

Khadka N, Bikson M. Response to the Letter to the Editor by Caraway et al. on “Tissue Temperature Increases by a 10 kHz Spinal Cord Stimulation System: Phantom and Bioheat Model”. Neuromodulation. 2019. https://doi.org/10.1111/ner.13079. 2019. PDF

Khadka N, Liu X, Zander H, Swami J, Rogers E, Lempka SF, Bikson M. Realistic Anatomically Detailed Open-Source Spinal Cord Stimulation (RADO-SCS) Model. bioRxiv. https://doi.org/10.1101/857946. 2019. PDF

Khadka N, Truong D, Williams P, MArtin J, Bikson M. The Quasi-uniform assumption for Spinal Cord Stimulation translational research. Journal of Neuroscience Methods. https://doi.org/10.1016/j.jneumeth.2019.108446. 2019. PDF

Khadka N, Borges H, Paneri B, Kaufman T, Nassis E, Zannou AL, Shin Y, Choi H, Kim S, Lee K, Bikson M. Adaptive current tDCS up to 4 mA. Brain Stimulation. https://doi.org/10.1016/j.brs.2019.07.027. 2019. PDF

Seibt O, Truong D, Khadka N, Huang Y, Bikson M. Computational Finite Element Method (FEM) forward modeling workflow for transcranial Direct Current Stimulation (tDCS) current flow on MRI-derived head: Simpleware and COMSOL Multiphysics tutorial. bioRxiv. https://doi.org/10.1101/704940. 2019. PDF

Zannou AL, Khadka N, Truong D, FallahRad M, Kopell B, Bikson, M. Tissue Temperature Increases by a 10 kHz Spinal Cord Stimulation System (NEVRO SENZA HF10): Phantom and bioheat Model. Neuromodulation. https://doi.org/10.1111/ner.12980. 2019. PDF

FallahRad M, Zannou AL, Khadka N, Prescott SA, Ratte S, Zhang T, Esteller R, Hershey B, Bikson M. Electrophysiology equipment for reliable study of kHz electrical stimulation. The Journal of Physiology. 2019. doi: https://doi.org/10.1113/JP277654. 2019. PDF

Hadar R, Winter R, Edemann-Callesen H, Wieske F, Habelt B, Khadka N, Felgel V, Barroeta Hlusicka E, Reis J, Alexandru Tatarau C, Funke K, Fritsch B, Bernhardt N, Bikson M, Nitsche MA, Winter C. Prevention of schizophrenia deficits via non-invasive adolescent frontal cortex stimulation in rats . Nature Molecular Psychiatry . https://doi.org/10.1038/s41380-019-0356-x. 2019. PDF

2018

Zannou AL*, Khadka N*, Truong DQ, Zhang T, Esteller R, Hershey B, Bikson M. Temperature Increases by kilohertz frequency Spinal Cord Stimulation. Brain Stimulation. https://doi.org/10.1016/j.brs.2018.10.007. 2018. PDF

Khadka N, Borges H, Zannou AL, Jang J, Kin B, Lee K, Bikson M. Dry tDCS: Tolerability of a novel multilayer hydrogel composite non-adhesive electrode for transcranial direct current stimulation. Brain Stimulation 11 (5). https://doi.org/10.1016/j.brs.2018.07.049. 2018. PDF

Edemann-Callesen H, Habelt B, Wieske F, Jackson M, Khadka N, Mattei D, Bernhardt N, Heinz A, Liebetanz D, Bikson M, Padberg F, Hadar R, Nitsche MA, Winter C. Non-invasive modulation reduces repetitive behavior in a rat model through the sensorimotor cortico-striatal circuit. Nature Translational Psychiatry 8 (1). https://doi.org/10.1038/s41398-017-0059-5. 2018. PDF

2017

Ezquerro F, Moffa AH, Bikson M, Khadka N, Aparicio LVM, Sampaio-Jr, B, Fregni F, Bensenor IM, Lotufo, PA, Pereira, AC, Brunoni AR. The influence of skin redness on blinding in transcranial direct current stimulation studies: a crossover trial. Neuromodulation 20 (3). 2017. doi: 10.1111/ner.12527. PDF

Khadka N, Zannou, AL, Zunara F, Truong DQ, Dmochowski J, Bikson M. Minimal Heating at the Skin Surface During Transcranial Direct Current Stimulation. Neuromodulation. 2017. doi: 10.1111/ner.1255. PDF

Chen CF, Bikson M, Chou LW, Shan C, Khadka N, Chen WS, Fregni F. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation. Nature Scientific Reports7. 2017. doi: 10.1038/srep43619. PDF

Leite J, Goncalves OF, Pereira P, Khadka N, Bikson M, Fregni F, Carvalho S. The differential effects of unihemispheric and bihemispheric tDCS over the inferior frontal gyrus on proactive control. Neuroscience research.2017. doi: 10.1016/j.neures.2017.08.005. PDF

Zareen N, Shinozaki M, Ryan D, Alexander H, Amer A, Truong DQ, Khadka N, Sarkar A, Naeem S, Bikson M, Martin JH. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury. Experimental neurology 297. 2017. doi: 10.1016/j.expneurol.2017.08.004. PDF

Esmaeilpour Z, Milosevic M, Azevedo K, Khadka N, Navarro J, Brunoni A, Popovic MR, Bikson M, Fontoff ET.Intracranial voltage recording during transcranial direct current stimulation (tDCS) in human subjects with validation of a standard model. Brain Stimulation 10(4). 2017. doi: 10.1016/j.brs.2017.04.114. PDF

2016

Shin DW, Khadka N, Fan J, Bikson M, Fu BM. Transcranial direct current stimulation transiently increases the blood-brain barrier solute permeability in vivo. SPIE Medical Imaging: Biomedical Applications in Molecular, Structural, and Functional Imaging. 2016 Mar 29; 97881X. doi: 10.1117/12.2218197. PDF

Paneri B, Adair D, Thomas C, Khadka N, Patel V, Tyler W, Parra L, Bikson M. Tolerability of repeated application of transcranial electrical stimulation with limited outputs to healthy subjects. Brain Stimulation 9 (5). 2016. doi: 10.1016/j.brs.2016.05.008. PDF

Alam M, Truong DQ, Khadka N, Bikson M. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Physics in Medicine & Biology 61 (12). 2016. doi: 10.1088/0031-9155/61/12/4506. PDF

2015

Khadka N, Truong DQ, Bikson M. Principles of within electrode current steering. Journal of Medical Devices 9 (2). 2015. doi: 10.1115/1.4030126. PDF

Paneri B, Khadka N, Patel V, Thomas C, Tyler W, Parra L, Bikson M. The tolerability of transcranial electrical stimulation used across extended periods in a naturalistic context by healthy individuals. PeerJ (e13141). 2015. doi: 10.7287/peerj.preprints.1097v2. PDF

Sarantos C, Bekritsky J, Khadka N, Bikson M, Adusumilli P. Design of Wireless Intra-Operative Pulse Oximeter With Reticulated Pressure-Sensitive Head. Journal of Medical Devices 9 (3). 2015. doi: 10.1115/1.4030600. PDF

Bikson M, Truong DQ, Mourdoukoutas A, Aboseria M, Khadka N, Adair D, Rahman A. Modeling sequence and quasi-uniform assumption in computational neurostimulation. Progress in Brain research. 2015. doi: 10.1016/bs.pbr.2015.08.005. PDF

2014

Khadka N, Rahman A, Sarantos C, Truong DQ, Bikson M. Methods for specific electrode resistance measurement during transcranial direct current stimulation. Brain Stimulation 8 (1). 2014. doi: 10.1016/j.brs.2014.10.004. PDF

Book Chapters

2022

Khadka N., Bikson M. (2022) Noninvasive Electrical Brain Stimulation of the Central Nervous System. Handbook of Neuroengineering. Springer Nature. DOI: doi.org/10.1007/978-981-15-2848-4_59-1 PDF

2021

Khadka, N., Bikson, M. (2021). Transcranial Electrical Stimulation (tES). The NeuroTech Primer: A Beginner’s Guide to Everything Neurotechnology, NeuroTechX. 109-125, ISBN: 979-8454254056 PDF

Truong, D. Q., Khadka, N., Peterchev, A. V. & Bikson, M. (2021) Transcranial electrical stimulation devices. The Oxford Handbook of Transcranial Stimulation, Second Edition. Oxford University Press. 2: 2 -55. https://doi.org/10.1093/oxfordhb/9780198832256.013.2 PDF

2019

Truong DQ, Khadka N, Bikson M. 2020. Transcranial Electrical Stimulation in Neural Engineering, ed. Bin He. Springer Nature. https://doi.org/10.1007/978-3-030-43395-6. PDF

2018

Khadka N, Woods A.J, Bikson M. Transcranial Direct Current Stimulation Electrodes. In: Knotkova H., Nitsche M., Bikson M., Woods A. (eds) Practical Guide to Transcranial Direct Current Stimulation. Springer Nature. pp 263-291. 2019. https://doi: 10.1007/978-3-319-95948-1_10 PDF

Patents

2018

Bikson M, Datta A, Khadka NElectrode Assemblies for Delivering Therapeutic Electrostimulation. USPTO. US 10143832. 2018.

2016

Bikson M, Parra LC, Datta A, Khadka N, Macuff SA. System and method for conducting multi-electrode electrical stimulation. USPTO. US 9,339,642 B1 (14/209,674). 2016.

Professional Activities and Accolades

Accolades

Travel Award, North American Neuromodulation Society (NANS) Annual Meeting, 2020

Wallace H. Coulter Foundation Award for Outstanding Graduate Researcher, 2016-2017

Travel Award for top 5 presenter, Minnesota Neuromodulation Symposium, 2015

David Eleanor Award for Exemplary Undergraduate Research, 2013-2015

New American Award for Best research, 2014

Hersh Scholar, 2013

Rising American Award for Outstanding Academics, 2013

Oral Presentation

NANS 2023. Novel Indications of Non-Invasive Neurostimulation Technologies. Jan 14, 2023

NANS 2022. High-density Spinal Cord Stimulation increases tissue temperature & Neurocapillary-modulation. Jan 13- 15, 2022

XIII International Symposium on Neuromodulation. Advanced electrode technologies for tDCS. Nov 19-24, 2021

Engineering Principles of SCS and DBS: Emerging Concepts. Heating as a mechanism of kHz and high-density SCS and DBS. Jan 14, 2021.

Harvard Medical School/Massachusetts General Hospital. Non-invasive and invasive modalities of electrical stimulation: consequence of a current flow. 2020

International Conference of Translational Research in Brain Stimulation. Adaptive current tDCS up to 4 mA. Aug 31, 2020.

Three-In-Five Competition, Top 10 medical devices with commercial potential– WIPOXDesign of Medical Device Conference, 2015  Link (Pg 6)

Poster Presentation

Neuro-capillary modulation. 4th International Brain Stimulation Conference, 2021

Neuro-capillary modulation. NYC Neuromodulation, 2020 (Online) (E-Poster)

Bioheat model of kilohertz-frequency Deep Brain Stimulation increases brain tissue temperature. Neuromodulation the Science & NYC Neuromodulation 2019 (E-Poster)

Realistic Anatomically Detailed Open-source Spinal Cord Stimulation (RADO SCS) Model. Neuromodulation the Science & NYC Neuromodulation 2019

Generation 2 Bioheat Spinal cord Stimulation (SCS) model3rd International Brain Stimulation Conference, 2019

Temperature increases during conventional and high frequency spinal cord stimulation (SCS)NYC Neuromodulation Conference, 2017

Tolerability of up to 4 mA tDCS using Adaptive StimulationNYC Neuromodulation Conference, 2017

Dry electrode for transcranial direct current stimulation (tDCS)NYC Neuromodulation Conference, 2017

Understanding the skin response to transcranial direct current stimulation (tDCS)Sfn, 2016

Design of Wireless Intra-Operative Pulse Oximeter  With Reticulated Pressure-Sensitive Head. Military Health System Research Symposium, 2016

Factors influencing Current flow through Skin during transcranial electrical stimulationSfn, 2015 & NYC Neuromodulation, 2016

Design of Wireless Intra-Operative Pulse Oximeter  With Reticulated Pressure-Sensitive HeadDesign of Medical Device Conference, 2015

Principles of within electrode current steeringMinnesota Neuromodulation Symposium, 2015

Methods of Specific electrode resistance measurement during transcranial direct current stimulation (tDCS)Sfn, 2014

Professional Courses

Hands-On Cadaver Course for EngineersNorth American Neuromodulation Society (NANS), 2019

Hands-On NEURON Course. Yale University, 2019

Peer Reviewer

Pain and Therapy

Computer Methods and Programs in Biomedicine

Scientific Reports, Nature

Brain Stimulation

Journal of Medical Devices

PeerJ

Journal of Neural Engineering

Neuroimage

Physics in Medicine and Biology

Neuromodulation

Biomedical Physics & Express

Bioelectrochemistry

IEEE

Dove Medical Press

Editor

Frontiers Neuroergonomics Since 2020

Find more about my research activities at my Google Scholar  and Researchgate web links.