Posts tagged Gozde Unal
PhD Candidate Gozde Unal defends her thesis - Friday, May 13, 2022

Gozde Unal, a PhD candidate in the lab of Dr. Marom Bikson will defend her dissertation thesis on Friday, May 13, 2022 at 11am. A copy of her abstract is below. If you would like to attend, please contact Gozde at gunal000@citymail.cuny.edu for the Zoom meeting ID. The meeting is also taking place in person in the Center for Discovery & Innovation 3rd floor conference room (CDI 3.352)

Abstract

Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient’s head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes. However, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice. In this thesis, we develop a computational framework based on diverse clinical data sets. We developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These “adaptive” models simulate ECT both during therapeutic stimulation using high current and when dynamic impedance is measured, as well as prior to stimulation when low current is used to measure static impedance. We modeled two scalp layers: a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject-specific maximum (σSS̅̅̅̅), and a deep scalp layer with a subject-specific fixed conductivity (σDS). We demonstrated that variation in these scalp parameters may explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrated that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models. Our predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and ECT current delivery to the brain, themselves depend on assumptions about tissue properties. Broadly, our novel modeling pipeline opens the door to explore how adaptive-scalp conductivity may impact transcutaneous electrical stimulation (tES). Lastly, we incorporate the (device specific) role of frequency with a single overall assumption allowing quasi-static stimulations of ECT: appropriately parametrizing effective resistivity at single representative frequency (e.g., at 1 kHz), including subject-specific and adaptive skin resistivities. We only stipulate that our functions for (adaptive) resistivity at 1 kHz explain local tissue resistivity as they impact the static and dynamic impedance measures by specific ECT devices (e.g., Thymatron).

PhD Student Gozde Unal presents her second exam - Tuesday May 11, 2021

Gozde Unal, a PhD student in the lab of Dr. Marom Bikson will present her defense of her research proposal on Tuesday, May 11, 2021 at 9am. A copy of her abstract is below. If you would like to attend, please contact Gozde at gunal000@citymail.cuny.edu for the Zoom meeting ID.

ADAPTIVE CURRENT-FLOW MODELS OF ECT:

EXPLAINING INDIVIDUAL STATIC IMPEDANCE, DYNAMIC IMPEDANCE, AND BRAIN CURRENT DENSITY

Abstract

Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient’s head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes. However, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice.

We developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These “adaptive” models simulate ECT both during therapeutic stimulation using high (~1 A) current and when dynamic impedance is measured, as well as prior to stimulation when low (~1 mA) current is used to measure static impedance. We modeled two scalp layers: a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject specific maximum,

SS),

and a deep scalp layer with a subject-specific fixed conductivity,

DS).

We demonstrate that variation in these scalp parameters explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrate that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models.

Our predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and current delivery to the brain, are themselves subject to assumptions about tissue properties. Broadly, our novel pipeline for tES models is important in ongoing efforts to optimize devices, personalize interventions, and explain clinical findings.

2nd Exam  Unal Gozde PhD(bME)   announcement for website.jpg