New Paper: Transcranial Direct Current Stimulation Accelerates Allocentric Target Detection

Brain Stimulation 6(3) 433-439

J. Medina, J. Beauvais, A. Datta, M. Bikson, H.B. Coslett, R.H. Hamilton.

Background

Previous research on hemispatial neglect has provided evidence for dissociable mechanisms for egocentric and allocentric processing. Although a few studies have examined whether tDCS to posterior parietal cortex can be beneficial for attentional processing in neurologically intact individuals, none have examined the potential effect of tDCS on allocentric and/or egocentric processing.

Objective/hypothesis

Our objective was to examine whether transcranial direct current stimulation (tDCS), a noninvasive brain stimulation technique that can increase (anodal) or decrease (cathodal) cortical activity, can affect visuospatial processing in an allocentric and/or egocentric frame of reference.

Methods

We tested healthy individuals on a target detection task in which the target – a circle with a gap – was either to the right or left of the viewer (egocentric), or contained a gap on the right or left side of the circle (allocentric). Individuals performed the task before, during, and after tDCS to the posterior parietal cortex in one of three stimulation conditions – right anodal/left cathodal, right cathodal/left anodal, and sham.

Results

We found an allocentric hemispatial effect both during and after tDCS, such that right anodal/left cathodal tDCS resulted in faster reaction times for detecting stimuli with left-sided gaps compared to right-sided gaps.

Conclusions

Our study suggests that right anodal/left cathodal tDCS has a facilitatory effect on allocentric visuospatial processing, and might be useful as a therapeutic technique for individuals suffering from allocentric neglect.

Read the Full Paper here

Keywords:

  • Transcranial direct current stimulation;

  • Neglect;

  • Egocentric;

  • Allocentric;

  • Current density modeling

Neural Engineering
New Editorial: The “Quasi-Uniform” Assumption in Animal and Computational Models of Non-Invasive Electrical Stimulation

Brain Stimulation 6 (2013): 704-705

Marom Bikson, Jacek Dmochowski, Asif Rahman

From the articles ” Computational models of transcranial stimulation predict brain current flow patterns for dose optimization. Translational animal models aim at elucidating the cellular mechanisms of neuromodu- lation. Here we identify and define a ubiquitous assumption under- lying both computational and animal models, referred to herein as the “quasi-uniform assumption”. Though we attempt to rationalize the biophysical plausibility for the quasi-uniform assumption based on the limited electric field gradients generated during stimulation, our goal is neither to justify nor repudiate it, but rather emphasize its implicit use in a majority of modeling and animal studies. ”

Read the whole thing here

Neural Engineering
Hot off the press: Our modeling studies on Cranial Electrotherapy Stimulation and tPCS

Cranial electrotherapy stimulation and transcranial pulsed current stimulation: A computer based high-resolution modeling study

Abhishek Datta, Jacek P. Dmochowski, Berkan Guleyupoglu, Marom Bikson, Felipe Fregni

Neuroimage. 2013 Jan 15;65:280-7. doi: 10.1016/j.neuroimage.2012.09.062. Epub 2012 Oct 5

Highlights:

► CES-induced current passes the skull and reaches cortical and subcortical areas.

► CES induced brain electric fields ranges from 0.2 to 0.6 V/m depending on the model.

► CES induced electrical current varies according to the electrode montage.

► Peak electric fields in some subcortical areas were similar to cortical regions.

► CES induced currents in the mid-brain exceed cortical values in some montages.

Download PDF 

7-3-13.PNG
Neural Engineering
New Paper: tDCS dose in obesity

Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines

NeuroImage: Clinical 2 (2013) 759–766

Dennis Q. Truong, Greta Magerowski, George L. Blackburn, Marom Bikson,Miguel Alonso-Alonso

Full PDF

Abstract

Recent studies show that acute neuromodulation of the prefrontal cortex with transcranial direct current stim- ulation (tDCS) can decrease food craving, attentional bias to food, and actual food intake. These data suggest po- tential clinical applications for tDCS in the field of obesity. However, optimal stimulation parameters in obese individuals are uncertain. One fundamental concern is whether a thick, low-conductivity layer of subcutaneous fat around the head can affect current density distribution and require dose adjustments during tDCS adminis- tration. The aim of this study was to investigate the role of head fat on the distribution of current during tDCS and evaluate whether dosing standards for tDCS developed for adult individuals in general are adequate for the obese population. We used MRI-derived high-resolution computational models that delineated fat layers in five human heads from subjects with body mass index (BMI) ranging from “normal-lean” to “super-obese” (20.9 to 53.5 kg/m2). Data derived from these simulations suggest that head fat influences tDCS current density across the brain, but its relative contribution is small when other components of head anatomy are added. Cur- rent density variability between subjects does not appear to have a direct and/or simple link to BMI. These results indicate that guidelines for the use of tDCS can be extrapolated to obese subjects without sacrificing efficacy and/ or treatment safety; the recommended standard parameters can lead to the delivery of adequate current flow to induce neuromodulation of brain activity in the obese population.

6-21-13.PNG
Neural Engineering
Prof. Bikson directs: 2013 Kaylie Entrepreneurship Competition

-Tuesday May 21, 2012, Steinman Lecture Hall –

Please join us for a very special event at the Grove School of Engineering on Tuesday, May 21, 2013 – the 3rd Annual Kaylie Prize for Entrepreneurship at The City College of New York.   In topics ranging from using online tools to change how we wait in lines, changing paper recycling with disappearing ink, to wall-climbing robots in the subway, to innovations in medical technology, the Kaylie semi-finalist teams will compete in fast-paced presentations and physical demonstrations – culminating in the selection of a winner.

The Kaylie Prize for Entrepreneurship was established in 2010 through an endowment by alumnus Harvey Kaylie.  Mr. Kaylie is president and founder of Mini-Circuits, a Brooklyn-based RF and microwave electronic components design, manufacture, and distribution company.  The Kaylie Prize for Entrepreneurship has developed into one of the most innovative and exciting entrepreneurship mechanisms in New York City. It has facilitated rapid acceleration of commercialization of student-generated ideas. The prize is directed by Prof. Marom Bikson.

This event is an opportunity to experience an intensive one-day competition and join a network of NYC area business and engineering leaders.

 So please join us in the Steinman Lecture Hall:

3:30 pm               Opening remarks by President Coico, Mr. Kaylie and Dean Barba

3:44 pm               Introduction of teams by Prof. Marom Bikson

3:45 – 4:45 pm     Short presentations by each of the 5 teams
4:45 – 6:45 pm     Reception and judging

6:45 – 7:00 pm     Announcement of the winners by Mr. Kaylie  

Neural Engineering
Biomedical Engineering Awards 2013

The Department of Biomedical Engineering at the City College of new York celebrates four outstanding graduate researchers from the Neural Engineering group.

Davide Reato – Wallace H Coulter Outstanding Biomedical Engineering Graduate Student Award

Marta Isabel Vanegas-Arroyave – Outstanding Research Project by a Master’s Candidate

John Ettikkalayil – Outstanding Academic Performance by a Master’s Candidate

Maged Elwassif – Graduate Academic Excellence

Congratulations to all!


Neural Engineering
Prof. Bikson gives second seminar in Oxford, May 9th

9th May 2pm

Making Sense of Transcranial Direct Current Stimulation: From High-Definition to Individualised Targeting

Marom Bikson, PhD. Department of Biomedical Engineering, The City College of New York of CUNY

Seminar Room A, Level 6, west Wing, John Radcliffe Hospital

Neural Engineering
New 2013 published papers available for download

Neuroimage

Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS

PDF

AND

J. Neural Eng. 10 (2013) 036018 (10pp) doi:10.1088/1741-2560/10/3/036018
Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications
for clinical dose
PDF


Neural Engineering
3 new tenure-track faculty lines in “Translational Neuroscience” at CCNY

We have three openings tenure-track faculty positions in “Translational Neuroscience” here at CCNY encompassing clinical, basic, and computational neuroscience. The home department for each position is fairly flexible, though we envision one hire in Biomedical Engineering, one in Psychology and one in the Medical School. Joint appointments with Math, Biology, etc. are also possible. The search will consider all ranks from Assistant to Full professor.

Please also distribute this announcement to students or collaborators who may be interested.

https://home.cunyfirst.cuny.edu/psp/cnyepprd/GUEST/HRMS/c/HRS_HRAM.HRS_CE.GBL?Page=HRS_CE_JOB_DTL&Action=A&JobOpeningId=8049&Site

Neural Engineering
April 30, 2013 lecture “The tongue as visual surrogate: experiences with sensory substitution for blindness”

PRISM Lecture/Neuroscience joint talk:

“The tongue as visual surrogate: experiences with sensory substitution for blindness”

AMY C. NAU, OD, FAAO

University of Pittsburgh School of Medicine

Tuesday April 30, 2013, Time: 12:35 – 1:45 PM  Location: NAC 7/236 

Abstract: Sensory substitution is a newer concept for restoring a sense of the environment to the completely blind.  How to test performance for states of ultra low vision in the context of artificial vision, particularly those mediated through non-visual pathways is a new area of research.  This lecture will provide an overview of experiences using the BrainPort and some method to conduct objective and quantifiable assessments of behavioral performances.  In addition, preliminary results of neuroimaging studies using diffusion tensor MR imaging (DTI) and functional positron emission tomography (PET) will be shown to suggest that the visual brain becomes less organized as a function of blindness duration.

Biography: Dr. Nau is the Director of optometric and low vision services for the UPMC Eye Center, and the founder of the Sensory Substitution Laboratory at the University of Pittsburgh. She graduated from the New England College of Optometry and completed a residency in ocular disease at the VAMC in Boston. She practiced at the Beth Israel Deaconess Hospital in Boston for five years and has been at the University of Pittsburgh since 2003.  Clinically, she specializes in medical contact lenses for ocular surface and corneal disease, including scleral lenses and contacts for artificial corneas. Her research interests primarily center on artificial vision technologies for the blind, including sensory substitution. Her laboratory has conducted the largest human studies to date of the BrainPort Vision Device, which uses the tongue as a means to convey visual information to the brain.

Neural Engineering
CCNY Neural Engineering “Masters Marathon” and 2013 picture day

UPDATE.  All three candidates passed the thesis defenses!  We are very proud of outstanding projects and presentations.

Showin in picture (left to right):

Prof. Simon Kelly, Prof. Lucas Parra, Marta Isabel Vanegas Arroyave (soon MS), Linford Leitch (soon MS), Dennis Truong (soon MS), Prof. Marom Bikson.

4-25-13.PNG


Friday, April 26th 2013

10:30 AM  “A novel visual stimulation paradigm: exploiting individual primary visual cortex geometry to boost steady state visual evoked potentials (SSVEP).” MS Candidate MARTA ISABEL VANEGAS ARROYAVE.  Advisor: Prof. Simon Kelly. Location: Steinman BME 5th Floor conference room

12:00 PM “Finite Element Study of transcranial Direct Current Stimulation: customization of models and montages.” MS candidate DENNNIS Q. TRUONG. Advisor: Prof. Marom Bikson, Location: Steinman Room 2M13 (floor 2M)

1:30 PM  “Design, Product Development, and Risk Assessment of Tin (Sn) ring electrodes as a substitute to Silver-Silver Chloride (Ag/AgCl) ring electrodes for High Definition – transcranial Direct Current Stimulation (HD-tDCS).” MS Candidate LINFORD LEITCH, Location: Steinman Room 2M13 (floor 2M)

3:00 PM  Picture time.  Please meet right in front of Steinman Hall and please be prompt, as we will take pictures right away (if it rains meet in Neural Engineering).  Because we have not updated our picture in years, current and PAST lab members should come.  Please spread the word to everyone (since not everyone might be on the mailing lists).   All students, volunteers, lab affiliates should come.

Neural Engineering
New Grant award for DoD to research: Cellular Mechanisms of Transcranial Direct Current Stimulation

With Dr. Marom Bikson as PI, the CCNY Neural Engineering group was awarded a major 3 years grant from the Department of Defense (DoD) Air Force Office of Scientific Research (AFOSR).

During transcranial Direct Current Stimulation (tDCS), low-intensity DC current is applied across the scalp to enhance specific performance or training efficacy on a range of complex cognitive tasks; moreover tDCS has been suggested to produce minimal side-effects (undesired cognitive changes).  The central premise of this proposal if that tDCS achieves task-specific modulation through a cellular mechanism where only neuronal circuits primed during tDCS (for example by training) are modulated by tDCS, while none primed mechanisms are not modulated.  The specific goal of this proposal is thus to establish a cellular substrate for DCS mediated activation-specific changes.

 

Neural Engineering
New York City tDCS workshop on April 1, co-directed by Dr. Marom Bikson, hosted at Burke Hospital by Soterix Medical

New York City tDCS workshop on April 1, co-directed by Dr. Marom Bikson, hosted at Burke Rehabilitation Hospital by Soterix Medical Inc.

We will be there!  The workshop is expected to sell out so reserve a spot ASAP.

Talk by Dr. Marom Bikson, Dr. Felipe Fregni, and Dr. Dylan Awards,

Hands-on workshop on tDCS and HD-tDCS (!) plus demonstration of HDexplore and HDtargets,

Our lab will be running an hands-on modeling tutorial during one of the break-out sessions.

More details at the Soterix Medical website here 

Neural Engineering