New Review Paper on Transcutaneous spinal stimulation
Journal of Neurorestoratology 2015:3 73–82
Transcutaneous spinal stimulation as a therapeutic strategy for spinal cord injury: state of the art
PDF: BiksonFregniSpinalStim2015
Treatments for spinal cord injury (SCI) still have limited effects. Electrical stimu- lation might facilitate plastic changes in affected spinal circuitries that may be beneficial in improving motor function and spasticity or SCI-related neuropathic pain. Based on available animal and clinical evidence, we critically reviewed the physiological basis and therapeutic action of transcutaneous spinal cord stimulation in SCI. We analyzed the literature published on PubMed to date, looking for the role of three main noninvasive stimulation techniques in the recovery process of SCI and focusing mainly on transcutaneous spinal stimulation. This review discusses the main clinical applications, latest advances, and limitations of noninvasive electrical stimulation of the spinal cord. Although most recent research in this topic has focused on transcutaneous spinal direct current stimulation (tsDCS), we also reviewed the technique of transcutaneous electric nerve stimulation (TENS) and neuromuscular electrical stimulation (NMES) as potential methods to modulate spinal cord plasticity. We also developed a finite element method (FEM) model to predict current flow in the spinal cord when using different electrode montages. We identified gaps in our knowledge of noninvasive electrical stimulation in the modulation of spinal neuronal networks in patients with SCI. tsDCS, TENS, and NMES have a positive influence on the promotion of plasticity in SCI. Although there are no random- ized controlled studies of tsDCS in SCI, preliminary evidence is encouraging. FEMs predict that tsDCS electrode montage can be used to shape which spinal segments are modulated and what detailed areas of spinal anatomy can concentrate current density (eg, spinal roots). tsDCS is a technique that can influence conduction along ascending tracts in the spinal cord, so could modulate supraspinal activity. It may also be a promising new approach for a number of neu- ropsychiatric conditions.