New Paper: tDCS Remotely Supervised Home Delivery in MS

Neuromodulation: Technology at the Neural Interface doi: 10.1111/ner.12430

Transcranial Direct Current Stimulation Is Feasible for Remotely Supervised Home Delivery in Multiple Sclerosis

Read the full paper

Margaret Kasschau; Jesse Reisner; Kathleen Sherman; Marom Bikson; Abhishek Datta; Leigh E. Charvet

Objectives: Transcranial direct current stimulation (tDCS) has potential clinical application for symptomatic management in mul- tiple sclerosis (MS). Repeated sessions are necessary in order to adequately evaluate a therapeutic effect. However, it is not feasible for many individuals with MS to visit clinic for treatment on a daily basis, and clinic delivery is also associated with sub- stantial cost. We developed a research protocol to remotely supervise self- or proxy-administration for home delivery of tDCS using specially designed equipment and a telemedicine platform.

Materials and Methods: We targeted ten treatment sessions across two weeks. Twenty participants (n 5 20) diagnosed with MS (any subtype), ages 30 to 69 years with a range of disability (Expanded Disability Status Scale or EDSS scores of 1.0 to 8.0) were enrolled to test the feasibility of the remotely supervised protocol.

Results: Protocol adherence exceeded what has been observed in studies with clinic-based treatment delivery, with all but one participant (95%) completing at least eight of the ten sessions. Across a total of 192 supervised treatment sessions, no session required discontinuation and no adverse events were reported. The most common side effects were itching/tingling at the elec- trode site.

Conclusions: This remotely supervised tDCS protocol provides a method for safe and reliable delivery of tDCS for clinical studies in MS and expands patient access to tDCS.

5-24-16.PNG
Neural Engineering