New Paper: tDCS facilitates cognitive multi-task performance
Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask
M.Scheldrup, P.M. Greenwood, R. McKendrick, J. Strohl, M. Bikson, M. Alam, R.A.McKinley, R. Parasuraman.
Front. Hum. Neurosci. DOI: 10.3389/fnhum.2014.00665 Free ONLINE
Abstract: There is a need to facilitate acquisition of real world cognitive multi-tasks that require long periods of training (e.g., air traffic control, intelligence analysis, medicine). Non-invasive brain stimulation – specifically transcranial Direct Current Stimulation (tDCS) – has promise as a method to speed multi-task training. We hypothesized that during acquisition of the complex multi-task Space Fortress, subtasks that require focused attention on ship control would benefit from tDCS aimed at the dorsal attention network while subtasks that require redirection of attention would benefit from tDCS aimed at the right hemisphere ventral attention network. We compared effects of 30 min prefrontal and parietal stimulation to right and left hemispheres on subtask performance during the first 45 min of training. The strongest effects both overall and for ship flying (control and velocity subtasks) were seen with a right parietal (C4 to left shoulder) montage, shown by modeling to induce an electric field that includes nodes in both dorsal and ventral attention networks. This is consistent with the re-orienting hypothesis that the ventral attention network is activated along with the dorsal attention network if a new, task-relevant event occurs while visuospatial attention is focused (Corbetta et al., 2008). No effects were seen with anodes over sites that stimulated only dorsal (C3) or only ventral (F10) attention networks. The speed subtask (update memory for symbols) benefited from an F9 anode over left prefrontal cortex. These results argue for development of tDCS as a training aid in real world settings where multi-tasking is critical.