Transcranial Direct Current Stimulation: Transition to home-based therapy for pain treatment and other disorders

Marom Bikson
The City College of New York

May 18 2017
American Pain Society

Leigh Charvet, Helena Knotkova, Colleen Loo, Abhishek Datta
Alexa Riggs, Henry Bernstein, Vaishali Patel, Dennis Truong, Gozde Unal, Denis Arce, Margaret Kasschau, Jesse Reisner, Kathleen Sherman, Michael C. Stevens, Angelo Alonzo, Kevin Krull, Lamia Haider
Disclosure:

Soterix Medical Inc. produces tDCS and High-Definition tDCS. Marom Bikson is founder and has shares in Soterix Medical. Marom Bikson serves on the scientific advisory board of Boston Scientific Inc.

Support:

NIH (NIMH, NINDS, NCI, NIBIB) – BRAIN initiative, NSF, Epilepsy Foundation, Wallace Coulter Foundation, DoD (USAF, AFOSR)

Questions: Twitter #APStDCS
Why go home?
Why go home?

Because we can
- tDCS is deployable, simple and safe

Because patient demand
- Burden of travel for repeated sessions

Because we should
- Lack of good options leads to unfortunate substitutions ("DIY-tDCS")

To advance science
- High volume and naturalistic testing
Why worry?

Is current tDCS technology suitable for home use?

Reliability of electrode
 - Poor design / preparation can lead to skin burns, pain

Electrode position
 - Position of electrodes important for outcomes

Dose limitations
 - Safety data based on tested protocols

Compliance
 - Outcomes rely on prescription
tDCS is not “everything goes”

Poor electrode preparation and head-gear = irreproducible tDCS results
Things that are NOT debated

✓ tDCS is regulated by federal / state laws
 Both for medical treatment or neuro-enhancement
 Fregni et al. Regulatory Considerations 2015

✓ Even low intensity stimulation can cause harm when applied using bad technology
 Not all devices are equal

✓ More clinical trials are needed to establish efficacy
 Clinicians prescribe therapies off-label

✓ tDCS can change the brain
 Decades of animal and clinical neurophysiology

✓ People will seek relief from suffering + self-improvement
 Special consideration required in medical care
When is the right time?

40,000+ sessions
No documented serious adverse event in controlled clinical trials
Bikson et al. Safety consensus.

tDCS is investigated for a wide range of indications
Off-label use is inevitable for majority of patient candidates (who are suffering now)

Considered safe enough to test on healthy subjects
USA FDA cleared

Current home use
Why worry?

Is current tDCS technology suitable for home use?

Reliability of electrode
- Poor design / preparation can lead to skin burns, pain

Electrode position
- Position of electrodes important for outcomes

Dose limitations
- Safety data based on tested protocols

Compliance
- Outcomes rely on prescription
Expertise of operator

Home-use
Self application
or Superseded

Clinic
Trained operator

Medical center
or University
Increased automation

Home: Fully automatic, No flexibility

Clinic: Semi-automatic, Some flexibility

Medical Center: Customization, flexibility, integration with other equipment
Is more risk acceptable in any case?
Risk Management

Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols

Leigh E. Charvet¹*, Margaret Kasschau¹, Abhishek Datta², Helena Knotkova³, Michael C. Stevens⁴, Angelo Alonzo⁵, Colleen Loo⁵, Kevin R. Krull⁶ and Marom Bikson⁷

¹ Department of Neurology, Stony Brook Medicine, Stony Brook, NY, USA, ² Soterix Medical Inc., NY, USA, ³ MJHS Institute for Innovation in Palliative Care, NY, USA, ⁴ Olin Neuropsychiatry Research Center, Yale University School of Medicine, New Haven, CT, USA, ⁵ School of Psychiatry, University of New South Wales, Black Dog Institute, Randwick, Australia, ⁶ Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA, ⁷ Department of Biomedical Engineering, The City College of New York of CUNY, NY, USA

Remote supervision involves clinical trial specific technology and protocols
Risk Management

- **Training of staff and supervision**
 - Formal certification

- **Assessment of users capability for remote tDCS**
 - Clinic based evaluation, tolerability
 - User may be subject or care-giver

- **Training procedures and material for user**
 - Manuals, video... customized to user

- **Simple and fail safe electrode preparation**
 - Given user’s capability

- **Strict dose control for each session**
 - Pre-set timing + intensity, electrode placement

- **Ongoing compliance monitoring**
 - Defined corrective measures/ abort criterion
Training of staff and supervision
 Formal certification

Assessment of users capability for remote tDCS
 Clinic based evaluation, tolerability
 User may be subject or care-giver

Training procedures and material for user
 Manuals, video… customized to user

Simple and fail safe electrode preparation
 Given user’s capability

Strict dose control for each session
 Pre-set timing + intensity, electrode placement

Ongoing compliance monitoring
 Defined corrective measures/ abort criterion
A. Prescription – Dose limited
B. Dose stored on physical module (battery)
C. Single use electrodes
D. Single position head-gear
E. Simple activation (one button)
F. Storage of compliance (time of use, resistance)
G. Clinical supervision
Current home use

Contact Us

Hi, doctor! I have electrode #32.

Great! Your code is #22.

CODE?

PAIN LEVEL?

PAIN LEVEL?

MILD

Completion code #724

Great! Thanks
Risk Management

- Training of staff and supervision
 Formal certification

- Assessment of users capability for remote tDCS
 Clinic based evaluation, tolerability
 User may be subject or care-giver

- Training procedures and material for user
 Manuals, video... customized to user

- Simple and fail safe electrode preparation
 Given user’s capability

- **Strict dose control for each session**
 Pre-set timing + intensity, electrode placement

- Ongoing compliance monitoring
 Defined corrective measures/ abort criterion
tDCS electrode positioning (M1-SO montage)

10-20 based measurement and placement

Head-gear based positioning and placement

1x Measure to select cap size – provided to subject

Electrodes snap to head-gear, positioned at once

Electrodes “held” in place while rubber bands positioned
Training of staff and supervision
- Formal certification

Assessment of users capability for remote tDCS
- Clinic based evaluation, tolerability
- User may be subject or care-giver

Training procedures and material for user
- Manuals, video… customized to user

Simple and fail safe electrode preparation
- Given user’s capability

Strict dose control for each session
- Pre-set timing + intensity, electrode placement

Ongoing compliance monitoring
- Defined corrective measures/ abort criterion
- Training of staff and supervision
 - Formal certification
- Assessment of users capability for remote tDCS
 - Clinic based evaluation, tolerability
 - User may be subject or care-giver
- Training procedures and material for user
 - Manuals, video… customized to user
- Simple and fail safe electrode preparation
 - Given user’s capability
- Strict dose control for each session
 - Pre-set timing + intensity, electrode placement
- Ongoing compliance monitoring
 - Defined corrective measures/ abort criterion
- Training of staff and supervision
 - Formal certification

- Assessment of users capability for remote tDCS
 - Clinic based evaluation, tolerability
 - User may be subject or care-giver

- Training procedures and material for user
 - Manuals, video… customized to user

- Simple and fail safe electrode preparation
 - Given user’s capability

- Strict dose control for each session
 - Pre-set timing + intensity, electrode placement

- Ongoing compliance monitoring
 - Defined corrective measures/ abort criterion
Training of staff and supervision
- Formal certification

Assessment of users capability for remote tDCS
- Clinic based evaluation, tolerability
- User may be subject or care-giver

Training procedures and material for user
- Manuals, video… customized to user

- Simple and fail safe electrode preparation
 Given user’s capability

- Strict dose control for each session
 - Pre-set timing + intensity, electrode placement

- Ongoing compliance monitoring
 - Defined corrective measures/ abort criterion
tDfCS electrode technology was unchanged in 15+ years

“Sponge pocket” held by rubber band head-gear
tDCS electrode technology was unchanged in 15+ years

“Sponge pocket” held by rubber band head-gear

✧ Dry electrodes
Off hairline, Non adhesive
tDCS electrode technology was unchanged in 15+ years
“Sponge pocket” held by rubber band head-gear

✧ **Dry electrodes**
 Off hairline, Non adhesive

✧ **Adhesive electrodes**
 Off hairline, Self-Adhesive
tDCS electrode technology was unchanged in 15+ years
“Sponge pocket” held by rubber band head-gear

- **Dry electrodes**
 Off hairline, Non-adhesive

- **Adhesive electrodes**
 Off hairline, Self-Adhesive

- **Pre-saturated sponges with embedded electrodes**
 Single position “snap on” head-gear
Why go home?

Because we can
- tDCS is deployable, simple and safe

Because patient demand
- Burden of travel for repeated sessions

Because we should
- Lack of good options leads to unfortunate substitutions (“DIY-tDCS”)

To advance science
- High volume and naturalistic testing
Is more risk acceptable?

Remote Supervised

Home Clinic Medical Center
Application specific tDCS technology + protocols = flat risk (to be tested and validated)
Transcranial Direct Current Stimulation: Transition to home-based therapy for pain treatment and other disorders

Marom Bikson
The City College of New York

May 18 2017
American Pain Society

Leigh Charvet, Helena Knotkova, Colleen Loo, Abhishek Datta
Alexa Riggs, Henry Bernstein, Vaishali Patel, Dennis Truong, Gozde Unal, Denis Arce, Margaret Kasschau, Jesse Reisner, Kathleen Sherman, Michael C. Stevens, Angelo Alonzo, Kevin Krull, Lamia Haider
Extra Slides
What is the “dose” of tDCS?

- Size, position, and current applied to electrodes
- Example: 5x5 cm2 electrodes, C3 Anode, SO Cathode, 2 mA for 20 minutes

Peterchev, Bikson et. al.
Brain Stimulation 2012
What is the High-Definition tDCS?

• Use of small “HD” gel-electrodes, instead of sponges
• Categorical increase in control on brain targeting
• Useful with EEG

Dmochowski, Bikson et al
J. Neural Engr. 2011
What is the 4x1 HD-tDCS?

- Five HD electrodes (one center, four surround)
- Used for focal unidirectional cortical modulation

Datta, Bikson et al

Brain Stimulation 2009
Montovani Montage (tested for OCD)
“Active” electrode over the pre-Supplementary Motor Area
“Return” on the right shoulder
Current flows in and out of brain

Physics
- Current goes from anode to cathode
- All current that enters the cortex must exit

tDCS design implications
- Must consider both electrodes
- No such thing “anodal” or “cathodal” tDCS

Bikson et al. *Clinical Neurophys. 2010*
Current does not stop at cortex

Physics

- Current is conserved when passing through grey matter
- Electric fields can increase based on anatomy

TDCS design implications

- Deep brain structures cannot be ignored
- Spine sometimes cannot be ignored

Dasilva et al. *Headache*. 2012
Current does not stop at cortex

Physics

- Hot-spots around deep structures
- Cellular morphology is varied

tDCS design implications

- Difficult to predict "increase" or "decrease" in deep structures
- Details idiosyncratic