Quantification of Dose with Neuromodulation Device

Marom Bikson
The City College of New York

Neuromodulation dose is “defined by all parameters of the stimulation device that affect the electric and current density fields generated in the body”

1) Stimulation electrode / coil configuration parameters: shape, size, position, and electrical properties

2) Electrode / coil current or voltage waveform parameters: pulse amplitude, width, polarity, repetition frequency, train duration, interval and number of stimulation sessions
1) A box (battery or wall powered) that generates a electrical waveform

2) Electrodes outside or inside body, or coil outside body

Electrical current are generated inside the body leading to (govern) changes

Dose of neuromodulation devices

Only those parameters that influence currents in body
Subject data: age, sex, MRI, DTI, diagnosis

General knowledge (subject independent): mechanisms of action, prior clinical experience, etc.

Computational models

Response measures: motor threshold, seizure threshold, cognitive, clinical response, side effects, etc.

Subject

Induced electric field

Physiological response

Electrode/coil configuration

Electrode/coil current/voltage waveform

Dosing decision

Reduced metrics (e.g., electrode current density, total charge, total energy)

EM dose monitoring/verification

Choice of device type and settings

Stimulation device

Waveform generator

Electrodes/coil

Subject

EM dose

Electrode/coil

Electrode/coil configuration

Response measures: motor threshold, seizure threshold, cognitive, clinical response, side effects, etc.

Subject data: age, sex, MRI, DTI, diagnosis

General knowledge (subject independent): mechanisms of action, prior clinical experience, etc.

Computational models

Response measures: motor threshold, seizure threshold, cognitive, clinical response, side effects, etc.

Subject data: age, sex, MRI, DTI, diagnosis

General knowledge (subject independent): mechanisms of action, prior clinical experience, etc.
Stimulation device
- Waveform generator
- Electrodes/coil

EM dose
- Electrode/coil current/voltage waveform
- Electrode/coil configuration

Subject
- Induced electric field
- Physiological response

Dosing decision
- Reduced metrics (e.g., electrode current density, total charge, total energy)
- Computational models
- General knowledge (subject independent): mechanisms of action, prior clinical experience, etc.

Response measures:
- Motor threshold, seizure threshold, cognitive, clinical response, side effects, etc.

Subject data:
- Age, sex, MRI, DTI, diagnosis

Not Dose
- Choice of device type and settings
- EM dose monitoring/verification
• **Current generated in the body is NOT dose**
• But critically defines outcomes of stimulation
• Current in body determined by dose and tissue properties
• And so is subject specific
• Can be predicted using models or measured (dosimetry)
Response measures: motor threshold, seizure threshold, cognitive, clinical response, side effects, etc.

- **Response to stimulation is NOT dose**
- But represent outcomes of stimulation
- Can be used to adjust dose

 (rTMS for Depression uses TMS MEP, closed-loop for epilepsy uses EEG, Seizure for ECT)

- Essentially all FDA cleared technologies measure responses to adjust stimulation* (biomarker, sensation, behavior..)

*And studies / protocols do not report individual dose
- **Device name (brand) is NOT dose**
- Names end with “s” (Stimulation) that typically refer to how current is delivered to body and “intended” target. “Transcranial”, “deep”, “nerve X”
Dose is controlled (prescribed)

Drug dose is set by systemic application (tablets...)

Pharmacologic activity (efficacy and safety) is determined by drug concentration at tissue

“Electroceutical” dose is set by stimulation parameters (coil/electrode and waveform)

“Electrical activity” (efficacy and safety) is determined by electric fields at tissue
1) A box (battery or wall powered) that generates a electrical waveform

2) Electrodes outside or inside body, or coil outside body

Electrical current are generated inside the body leading to (govern) changes

Dose of neuromodulation devices

Only those parameters that influence currents in body
Things other than DOSE matter

• Efficacy: Subject state (concurrent interventions). “Functional Targeting” vs. “Anatomical Targeting”

• Safety: Device physical features (electrode materials)
Neuromodulation technologies with “Super-Synergy” such as transcranial Direct Current Stimulation*

- Mechanisms suggest limited functional outcomes when applied alone, but strong change in brain 'responsiveness'
- Boosts effects of concurrent therapy
- Also sensitive to other neuromodulators (drugs)

*tDCS known to enhance ongoing neuro-plasticity + Behavioral / cognitive interventions produce lasting benefit through neuro-plasticity

* As of 2016 the most studied neuromodulation technology
* Not proprietary (owned by one company)
* Safe enough to be widely used on healthy subjects
Recommendations

- Testing and application of neuromodulation devices should be driven by principle of REPRODUCABILITY. When can dose be unreported / uncontrolled?

- Use of biomarkers to adjust neuromodulation dose in a successful intervention should not be confused with verification the biomarker is useful. A name is not the same as verification of an anatomical target.
 - If assumptions are wrong, so are reasons to not report/control dose.

- Create path to clinic (patients) for technologies that are not proprietary and not specific to one indication. Yet are very tolerated/safe and independently tested.
Quantification of Dose with Neuromodulation Device

Marom Bikson
The City College of New York