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Article history: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique increasingly
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cognitive or clinical effects of tDCS, most studies compare the effects of active tDCS to those observed
with a sham tDCS intervention. In most cases, sham tDCS consists in delivering an active stimulation for a
few seconds to mimic the sensations observed with active tDCS and keep participants blind to the
intervention. However, to date, sham-controlled tDCS studies yield inconsistent results, which might
arise in part from sham inconsistencies. Indeed, a multiplicity of sham stimulation protocols is being

%ﬁiﬁial direct current stimulation used in the tDCS research field and might have different biological effects beyond the intended transient
Sham sensations. Here, we seek to enlighten the scientific community to this possible confounding factor in
Placebo order to increase reproducibility of neurophysiological, cognitive and clinical tDCS studies.
Reproducibility © 2019 Elsevier Inc. All rights reserved.
Variability
tDCS

Text

In light of increasing interest surrounding reproducible trans-

cranial direct current stimulation (tDCS) studies, guidelines have
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pharmacological interventions [4]. It consists of a set of procedures
designed to keep participants (single blind procedure) and exper-
imenters (double blind procedures) unaware of the administered
intervention (active or sham) and thus avoid bias and unrelated
observable effects. For subject blinding, the sham method most
commonly used in tDCS studies is based on mimicking typical
initial sensations of active tDCS underneath the electrode sites (e.g.,
tingling, itching). For experimenter blinding, allocation conceal-
ment is achieved by entering numeric codes [5] assigned to
waveform arms (e.g., sham, active) or a toggle (A/B mode). In
addition, some devices adjust an impedance display on the device
screen that also mimics impedance changes expected in the
“active” functioning of the device and detect loss of electrode
contact [5].

Thus, sham procedures in non-invasive brain stimulation trials
are fundamental due to the placebo response observed in non-
invasive brain stimulation trials [6] and the fact that non-blinded
trials overestimate the effects of subjective and objective out-
comes [7]. However, the neurobiological effect of sham tDCS re-
mains an under-addressed notion in the literature and can be
subdivided into two types of effects: 1) the direct neurobiological
effects, specifically the results of the type of sham used, in this case
weak electrical currents; 2) the indirect neurobiological effects,
that are seen across studies, e.g., general ‘placebo/nocebo’ or 'non-
specific’ effects. These would be independent of the type of sham
used. With this in mind, as other interventional tools, sham tDCS
has two important problematic and competing aspects.

Firstly, the blinding efficacy of current sham tDCS protocols is
non-optimal and can be improved depending on blinding objec-
tives [8—10], especially in cross-over studies. In this line, recent
“active” sham protocols, based on modeling and leveraging multi-
channel tDCS, have been developed to mitigate the subject blinding
problem [11,12]. For example, an approach could be to use multi-
electrode montages, optimized to create skin sensations and ef-
fects while keeping cortical electric fields close to zero [11], using
realistic head models and multichannel optimization algorithms
[13]. This technique provides a way to control both objective and
subjective sensation factors for double blinding in experiments and
can be made even more precise when based on personalized real-
istic head modeling. Another possibility, put forward by recent
studies [14,15], is the use of topical pretreatments to reduce ery-
thema and minimise paraesthesia in both the active and sham
group. Therefore, if successful, this would render the “active”
stimulation in the sham group unnecessary and the sham group
would only control for indirect neurobiological effects. More
generally, while current density in the skin is always higher than in
the brain, the ratio can vary by several orders of magnitude
depending on the montage [16]. Moreover, blinding of the experi-
menters could also be improved. Indeed, skin redness after tDCS
was reported to affect the blinding efficacy [17]. Therefore,
regardless of the protocol used, it is critical to systematically collect
data assessing the quality of the blinding. This can be as simple as
asking participants what they believe they received (sham or
active) and their confidence in this assessment. We recommend
scientists and clinicians use the standardized questionnaire vali-
dated and published recently by Antal and colleagues (2017) [18].
The documents can be downloaded from the website: http://www.
neurologie.uni-goettingen.de/downloads.html.

Secondly, sham tDCS might have biological effects beyond the
intended transient sensations [19]. In most cases, sham tDCS con-
sists in delivering a short period of active stimulation at the
beginning of the stimulation session (e.g., 10sat 0.1 mA [20],
120 sat 1 mA [21]) followed by no stimulation for a total duration
equal to the duration of the active stimulation [22]. It is usually
assumed that sham stimulation controls any potential effects

unrelated to the direct cortical stimulation itself. Based on studies
using tDCS and transcranial magnetic stimulation (TMS) over the
motor cortex, sham stimulation is unlikely to produce lasting
changes in cortical excitability after a single session [23]. However,
several studies have investigated tDCS effects with parameters
similar to those of sham parameters (i.e., short stimulation dura-
tion), with mixed findings [24—29]. Placebo-controlled studies
report a differential effect of the sham stimulation, some reporting
no effect of 30 s stimulation (15 s ramp-up to 2 mA, 15 s ramp-down
[30]; 10 s ramp-up/down, 30 s stimulation at 1 mA [31]; 15 s ramp-
up/down, 30s stimulation at 2 mA [32]) while others finding an
effect on different neurophysiological parameters (10 s ramp-up to
1 mA, 60 s ramp-down to 0.034 mA and continuous 13 min 50 s at
0.034 mA [33]; 30 s ramp-up to 2 mA, 30 s ramp-down, at the start
and end of the stimulation [34]). One tDCS study investigating the
neurobiological effects of parameters used in sham conditions as
the primary objective reported that a single session of 15 min sham
tDCS (i.e., 10 s ramp-up to 1 mA, 60 s ramp-down to 0.034 mA and
continuous 13 min 50 s at 0.034 mA) had similar effects to 1 or 2 mA
of 15 min stimulation [33] and different than 0 mA stimulation on
an event-related EEG component (P3 amplitude). According to this
study, although no behavioral effects were observed, a single ses-
sion of “sham” intervention could exert neuromodulatory effects
for some outcomes. Such a result could be explained by skin sen-
sations intentionally produced in the sham arm (ramp up/down) or
cortical modulation by the micro-ampere-scale current. The po-
tential physiological effects of non-invasive micro-ampere-scale
currents remain to be established, requiring effects at electric fields
two orders of magnitude below those established effective in ani-
mal models [35—37]. This could be also related to the stochastic
resonance model predicting that small amounts of noise injected
into a system promote low-level signals leading to enhanced
functions within this system [38—40]).

As with other therapeutic tools, the possible effects of sham
tDCS itself could be enhanced when repeated sessions are deliv-
ered. Indeed, repeated-sessions of tDCS is a promising therapeutic
intervention to decrease symptoms and improve cognition in
neuropsychiatry. Some of the variability in study outcomes [22]
might arise from sham inconsistencies. Indeed, since the first
sham-controlled clinical study, numerous sham parameters have
been described. For example, recent studies investigating the
clinical impact of tDCS in patients with major depression were
assessed from a systematic literature search using the following
terms: (“tDCS” AND (“depression” OR “MDD”) AND (“2018” OR
“2017”). From the 106 eligible studies identified in September 2018,
we focused on the 4 randomized controlled trials (RCT) [41—44].
Interestingly, sham parameters of these studies differ (current was
turned off automatically after 30 s of 2 mA stimulation [41]; 30 s of
0.5 mA stimulation [42]; ramp-up 30 s/ramp-down 15s, 30s of
2 mA stimulation [43]; constant current of 0.034 mA + 2 ramps
throughout sham intervention up to 1 and 0.5 mA (10 s ramp-up,
60 s ramp-down) [44]). Aside from this example from recent
studies of tDCS in major depressive disorder, the use of different
sham parameters in clinical studies reveals significant variations of
the injected electric charge from 15 [42] to 109 [33] mC. Another
point to consider in these clinical studies is the potential impact of
repeated low-intensity sham stimulations, which could produce
behavioral changes in the control condition that confound detec-
tion of therapeutic responses to the active arm. Thus, sham meth-
odology could be an important parameter among others (session
duration, total number of session, number of sessions a day, dura-
tion between two sessions, current intensity, site of stimulation) in
the design of tDCS clinical studies, not only for blinding, but also to
investigate potential specific neuromodulatory effects linked to the
sham stimulation itself.
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Several sham protocols for tDCS have been reported in the
literature (Fig. 1). Based on a recent review [3], 84% of 173 studies
report using similar approaches as reported in an early study by
Gandiga et al. [45]. However, the original protocol (i.e., 10 s ramp-
up followed by 30 s of active stimulation at 1 mA before manually
turning off the stimulator, Fig. 1A) has been modified, adjusting (1)
the intensity and duration of active current being delivered (from
“no current” to 2 minat 1maA), (2) the duration of ramp-in and
ramp-out phases (e.g., 5-305s), and (3) the number of ramps done
throughout the stimulation. Indeed, a newer sham protocol pro-
posed 2 periods of active stimulation, including ramps up/down
with 10—30s of stimulation in between, over the first and last
seconds of the stimulation [46] (Fig. 1B).

In order to help practitioners deliver adequate and reproducible
sham treatment interventions, several commercial stimulators
include a ‘double blind study mode’, which delivers a built-in-sham
mode. However, sham-placebo modes vary across stimulator
brands, which could be a confounding factor when comparing
studies and in multicenter studies using various devices across
centers (Table 1). In addition, it should be noted that these sham
parameters can also be adapted upon request to the companies.

Thus, we urge scientists and clinicians to be aware of the sham
parameters they used and accurately report them in scientific
literature, including when not using the preprogrammed built-in
‘double blind study mode’. This is particularly critical for studies
that use devices not designed for tDCS (e.g., iontophoresis devices
such as the Intelec Advanced Therapy System, Chattanooga, USA).

With this in mind, we have detailed in Supplementary Material
1 the sham-controlled studies using bifrontal (F3/F4/FP1/FP2) and
fronto-temporal montages (F3FP1/T3P3) based on recent major
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reviews [22,47,48] and divided them depending on their sham
parameters described (device “turned off”, short stimulation) and
looked the impact on their primary outcome. We report that out of
103 studies, only 14 studies do not report a short active stimulation
(only ramps), 51 studies report using ramp-down before turning off
the device and 44 studies report shutting off the device after the
active stimulation. Of those 103 studies, 46 were excluded from
further investigation due to missing information concerning the
sham parameters used. With the remaining 57 studies, we were
able to investigate if the total charge in the sham arm had an effect
(Yes or No) on the primary outcome (Supplementary Material 2).
From this analysis, the total charge delivered doesn't seem different
when comparing studies showing no effect of active tDCS
compared to sham tDCS (n=6; 94 mC ( + 115)), compared those
showing an effect (n = 51; 73 mC ( + 69)). This should be taken with
caution, as very few negative studies (n=6) could be analyzed.
Thus, to date, no recommendation can be made regarding a specific
sham protocol and none seem to be more rigorous than another.
Further studies are needed to assess the direct and indirect effects
of sham protocols.

Choosing the optimal control condition is another important
issue to consider. The field has mainly focused on “active sham”
control conditions mimicking stimulation sensations as realistically
as possible. This approach has partly been chosen because “pla-
cebo” control conditions have been strongly criticized in TMS and
drug research [49—53] and because “active sham” control condi-
tions could improve the blinding effect. Remarkably, systematic
assessment of blinding has been more often reported in brain
stimulation trials compared to drug trials [54]. Moreover, control
groups or waiting lists, used in psychotherapy and mindfulness
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Fig. 1. Illustration of different sham protocols used in tDCS studies — A) Original Gandiga sham protocol: 10s ramp-up, 30s stimulation, turn off the stimulator. B) Adapted
tDCS protocols: The stimulation period is the same for both active and sham interventions. Depending on studies, sham tDCS consists in either 1 or 2 ramps per session (beginning,
middle or/and end) with different duration of ramps (5, 8, 10, 15, 30 s). Different durations of active stimulation are delivered at the beginning and/or end of the stimulation period
(Durationspam = 5, 8, 10, 15, 20, 30, 40, 60, 120s). The period of active stimulation reaches the same or reduced peak intensity compared to the intensity delivered in the active
intervention. Lastly, some studies report a constant low intensity stimulation (0.016 or 0.034 mA) [33,44].



Table 1

Main parameters of the different built-in-sham modes from commonly used commercial stimulators, as described in their manuals. Constant intensity for each stimulator was reported for the current available devices. It

should be kept in mind that analogue electronic of the current source could have a ‘noise’ of equal or below 0.010 mA. Y:

=Yes; N=No.

Sooma(Helsinki, Finland)

Neuroelectrics Starstim
(Barcelona, Spain)

Soterix Medical Inc
(New York, USA)

neuroConn(lllmenau, Germany)

None

Programmable

Programmable
Programmable
0.012 to 0.024
Programmable
Programmable

Emulated

Durationacive(s)/30

(s)

Durationspam

Same as in active condition

0.3

Same as in active condition

<0.010

Same as in active condition

+0.010

Peak intensity (mA)

Constant intensity (mA)

1 (beginning)
0.1 mA/s

1 or 2 (2nd optionally at the end)

Programmable

1 (beginning)

Number of ramp up/down periods
Ramp up/Ramp down duration

Impedance check

Same as active

Continuous current 0.3 mA

Fake impedance

Brief pulses of 110 pA over

15 ms every 550 ms

YIY

YIY

YJY

Single/Double blind mode
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10 s ramp up to 1 mA, 7 s ramp down
to 0.3 mA for 20 min, 3 s ramp-down

at the end

(30s ramp up to 1mA, 30s

(30sramp up to 1 mA, 30s

30 s ramp up, 1 mA stimulation

Example Active stimulation of

ramp down)beginning + end optional = 1 or 2 min

stimulation

ramp down)beginning + end =2 min

during 40 s, 30 s ramp down = 1 min 40s
stimulation

20 min at 1 mA, 30s ramps

370 mC

20 min stimulation =

30 or 60 mC

60 mC

stimulation = 70 mC + impedance check (3.48 mC)

research for example, do not allow true double-blind trials [55,56].
A final complicating factor is the growing body of research sug-
gesting that control conditions themselves may be capable of
meaningfully modulating relevant brain regions/networks [57].
Realistic and elaborate sham tDCS protocols could invoke strong
therapeutic expectations and thus induce particularly large placebo
effects. This relates to the notions of ‘differential placebo effects’,
the concept that different types of placebos (e.g. inert pill versus
sham device) may yield different magnitudes of placebo response
[58—60]. This is a topic that has been studied for decades, but be-
comes paramount as sophisticated medical technologies require
elaborate placebo controls to maintain blinding integrity.

Thus, several promising research avenues can be put forward
with regard to decreasing the influence of sham tDCS, with the
main aim of keeping the balance between maintaining participant
blinding and limiting the development of sham into an ‘active
control’ condition. One the one hand, with the perspective of using
tDCS in clinical settings, the use of an “active control”, i.e. stimu-
lating a region considered inactive with regard to the main ques-
tion, as with TMS [61], could be recommended in some cases,
however, with the risk of including an active control with unknown
neurophysiological effects. Alternatively, the use of “active con-
trols” based on realistic head modeling with multi-electrode
montages exploiting scalp shunting mechanisms can be explored
as discussed above [11]. On the other hand, sham tDCS conditions
could also be reduced to a minimum of active components, even
going as far as no active components, when using protocols with
topical pretreatments [14,15]. Furthermore, new protocols could be
developed in order to detect the dissociation between direct and
indirect neurobiological effects, as done in other research fields
(e.g. neurofeedback, [62]).

In summary, the use of different sham stimulations can be a
confounding factor in reconciling results across clinical, cognitive,
and neurophysiological studies of tDCS. Indeed, when functional
neuroimaging, at different spatial and temporal levels (biological,
functional and structural) is used to gain new useful information
for inferring the mechanisms of action of tDCS (e.g., Refs. [63,64])
conclusions are drawn based on comparison between active and
sham interventions. Questions that should be further explored
include whether certain modalities of sham tDCS have a neuro-
biological effect, and if so, which ones. In addition, the cumulative
clinical effects of low-intensity, repeated sham tDCS should be
further investigated, as a recent controlled trial suggested that it
could have meaningful antidepressant effects [44]. Ultimately,
more research is necessary to ascertain the direct neurobiological
effects of sham tDCS protocols and evaluate their reliability [[65],
but see Ref. [66]]. It should be underscored that simply “turning
off” the tDCS device could harm blinding, therefore overestimating
the signal of active stimulation. In addition, accurately reporting
sham interventions is crucial to help increase reproducibility in
the tDCS research field (sham should be reported with the same
rigor as any stimulation dose; [67]). Future meta-analyses could
also include investigating pre-post effect sizes of all sham condi-
tions across studies (e.g., larger effect size for ‘ramp-up-ramp-
down’ vs ‘constant low intensity’ shams?), as done in a recent
meta-analysis looking specifically at the effects of sham tDCS on
corticospinal excitability [68]. Nevertheless, in parallel to a reliable
sham arm, other aspects should be considered in order to have
reproducible tDCS studies, such as better training of practitioners
and reporting of the electrode preparation (e.g., saline quantity, re-
use, cleaning method,...) and placement [2]. Our hope is that a
better understanding of these neurobiological processes can
decrease the noise in controlled trials, ultimately clarifying tDCS
efficacy.
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