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Abstract

The basic idea of linear Principal Component Analyses (PCA) consists
in decorrelating coordinates by an orthogonal linear transformation. In
this paper we generalize this idea to the nonlinear case. Simultaneously we
will drop the usual restriction to gaussian distributions. The linearity and
orthogonality condition of linear PCA is substituted with the condition of
volume conservation in order to avoid spurious information generated by
the nonlinear transformation. This leads us to a still very general class of
nonlinear transformations, called symplectic maps. Further on, instead of
minimizing the correlation, we minimize the redundancy measured at the
output coordinates. This generalizes second order statistics being only
valid for gaussian output distributions to higher order statistics. The pro-
posed paradigm implements Barlow’s redundancy reduction principle for
unsupervised feature extraction. The resulting factorial representation of
the joint probability distribution presumably facilitates density estimation
and 1s especially applied to novelty detection.

1 Introduction

The aim of PCA 1s to linearly decorrelate features by rotating the coordinates of
the feature space. Among the research done in the Neural Network community
there is a vast body of results related to linear PCA. The greatest part of it
demonstrates how various types of neural structures can perform PCA, and how
PCA can be derived from information theoretic principles. The latter results are
especially important to gain insight in the various learning paradigms, at least
in the simple case of linear transformations. However - mostly in the context of
information theory - the results were restricted to gaussian distributions of the
input signals. The aim of this paper is to make use of the more general principle



of redundancy reduction instead of linear decorrelation, furthermore to get rid
of the restriction to linear transformations for PCA.

Independently of each other Baldi and Hornik (1989) and Bourlard and
Kamp (1988) proved, that Back Propagation in a linear auto-association net
finds in the hidden layer the orthogonal projection onto the subspace spanned
by the first principal eigenvectors of the auto-correlation matrix. Oja (1989)
formulated a hebbian type learning rule that extracts the first principal com-
ponent and leads to a orthonormal linear transformation. Rubner and Tavan
(1989) proved that a network composed of linear neurons can be trained to per-
form PCA, if the synaptic adaptation is Hebbian in a vertical sense, i.e. from
inputs to outputs, and anti-Hebbian for the inhibitory lateral connections be-
tween the output units. A similar concept was proposed by Foldidk (1989). The
Hebbian and anti-Hebbian form of the learning rules can be derived from first
principles by applying information theoretic concepts (Linsker, 1988; Kuehnel
& Tavan, 1990).

On the other hand, within the last years there has been an increasing interest
in theories and models for unsupervised detection of statistical dependence in a
sensorial environment. One of the most important theories of feature extraction
is the one proposed by Barlow (1959, 1989). Barlow describes the process of cog-
nition as a preprocessing of the sensorial information performed by the nervous
system in order to extract the statistically relevant and independent features of
the inputs without loosing information. As a learning strategy Barlow (1959,
1989) formulated the principle of redundancy reduction. This kind of learning
is called factorial learning, since in the case of zero redundancy the joint prob-
ability distribution can be expressed by the product of the single coordinate
probability distributions. Recently Atick and Redlich (1990, 1992) and Redlich
(1993a, 1993b) concentrate on the original idea of Barlow yielding a interesting
formulation of early visual processing and factorial learning.

In the signal processing literature a closely related problem, called “blind
separation of sources”, has recently been addressed quite frequently. Here it
is assumed that statistical independent signals are linearly superposed, and the
task is to find the original signals. An outstanding work is that of Comon (1994)
where he formalizes his Independent Component Analyses (ICA) proposed in
(Comon, Jutten, & Herault, 1991). He restricts himself to linear transforma-
tions, but solves the problem of non-gaussian distributions by measuring the
redundancy in terms of higher order cumulants. Some papers have been pub-
lished addressing the nonlinear case, but they lack either in generality or in their
theoretical foundation (Karhunen & Joutsensalo, 1994; Burel, 1992). At last we
want to mention the work of Hastie and Stuetzle (1989) that proposed a statis-
tical technique for finding “Principal Curves”. The drawback of the proposed
algorithm is the lack of an analytic representation of the curves found.

Obradovic and Deco (1993) apply Barlow’s principle to a class of general
linear transformations which conserve the input information but minimize the
mutual information between the outputs in order to make them statistically



independent. Among other special cases, PCA 1s included in this class satisfying
the additional condition of norm or energy preservation.

Some nonlinear extensions of PCA for decorrelation of input signals were
recently introduced. These follow very closely Barlow’s original ideas of un-
supervised learning. Deco and Parra (1994) defined a stochastic neural net-
work of Ising spins that performs statistical decorrelation of Boolean outputs
by nonlinear transformations using information theoretic concepts. Deco and
Brauer (1994) formulated a neural paradigm for the statistical decorrelation
of the output components by using a special volume conserving architecture
and higher order cumulant expansions. Deco and Schiirman (1994) applied tri-
angular volume conserving architectures and information based decorrelation
learning algorithm for modeling chaotic time series. Atick and Redlich (1992)
and especially the two papers of Redlich (1993a, 1993b) use similar informa-
tion theoretic concepts and reversible cellular automata architectures in order
to perform nonlinear decorrelation. Taylor and Coombes (1993) presented an
extension of Oja’s learning rule (1989) for higher order neural networks.

The aim of our work is to formulate a connectionist network architecture
that performs Barlow’s unsupervised redundancy reduction learning in the most
general fashion. The basic idea is to define an architecture that assures perfect
transmission without loss of information. Thereby we make use of a special class
of nonlinear transformations, the so-called symplectic transformations, the key
property of which is volume preservation. Unless one has a priori knowledge
about the environment (i.e. distribution of the input signals) it is difficult to
find criteria for separating noise from useful information. Without having a good
model of the probability distributions of the environment, one should preserve
the information of the measured signal. The second reason for conserving the
information passed through a system, is more technical and arises from the
definition of the Shannon information of continuous distributions. Shannon
information is sensitive to scaling. By scaling continuous coordinates the amount
of information of a signal distribution changes. To avoid spurious information
generated by such a transformation, we require volume preserving maps.

In section two we will first introduce the class of symplectic transformations
in context of the information carried by a continuous random variable. In section
three we will explain our approach of reducing redundancy by minimizing a
simple upper bound of the entropy. In section four we present a parametrization
of symplectic maps by a connectionist network structure and perform gradient
calculations. In the following section we describe how the nonlinear redundancy
reduction technique presented in the paper can be used for density estimation
and novelty detection.



2  Entropy Preserving Nonlinear Maps

The entropy H{x} of a distribution P(x) of a continuous random variable x in

R™ is defined as (Shannon, 1948):

Hi{x}=H[P(x)]=—- / ) P(x)In P(x)dx (1)

Unlike the discrete case this entropy might be negative, e.g. the one point
distribution, in the continuous case represented by Dirac’s delta distribution, has
corresponding to (1), infinite negative entropy. Consider an arbitrary transfor-
mation y = f(x) of the random variable x in R™. The corresponding transform
of the entropy of the distribution P(x) can be express by (Papoulis, 1991)

Hiy} < H{y} —I—/ P(x)In (det (ﬁ)) dx (2)
Rn 3x
If £(x) is invertible, equality holds in (2). The Jacoby determinant in the
integral yields the scaling caused by the transformation f(x). For an arbitrary
distribution P(x) the transformation would generate spurious information, un-
less the determinant is equal one everywhere

i (25) < "
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As an unsupervised method, that doesn’t use any a priori knowledge about
the environment, linear PCA accomplishes this requirement in a very natural
manner. It performs only rotations, which are obviously volume conserving.
In order to generalize to nonlinear transformations, the only condition to be
maintained is volume conservation. A general class of transformations that fulfill
condition (3) are the symplectic maps (Abraham & Marsden, 1978) originally
introduced by Siegel (1943) in the context of multivariate function theory. In
classical mechanics this class coincides with the well-known class of canonical
transformations. A very interesting and for our purpose important fact is that
any non-reflecting ! symplectic transformation can be expressed implicitly in
terms of a scalar function

0 (Xt 0 -1 .
y:x—Jla—ZS<X2y) ; J:[I . ]:—Jl (4)

where I denotes the unity matrix in R*/?. The gradient is to be taken with
respect to the argument z = (x +y)/2 of S(z). ?

LA transformation y = f(X) in R" is called non-reflecting iff det(I — %) # 0 i.e. iff the

Jacobian of f(X) has no eigenvalue -1.
2This representation of symplectic maps is a special case of the generating function theory



Unfortunately, there is no general way of constructing S(z) analytically with
a given symplectic f(x) and vice versa. We could either define a function f(x)
and prove the volume conservancy, or we could define an arbitrary scalar func-
tion S(z) and realize the map by solving (4) numerically. The focus of this
work is to have the most general possible map. Therefore we do not restrict
to a certain structure given by an ad hoc definition of f(x). We will instead
use a network structure that has shown to be a general function approximator
(Hornik, Stinchcombe, & White, 1998), in order to have a flexible expression of
S(z).

3 Mutual Information and Factorial Represen-
tation

Let us now focus the attention on statistical independence. Consider a random
variable y in R” distributed according to a joint probability distribution P(y).
In general the components of the input are statistically dependent. Statistical
independence occurs when the joint probability distributions factorizes,

P = [ Pw) 5)

The definition of mutual information relies strongly on this definition of
independence. When random variables are statistically independent one would
expect vanishing mutual information. A distance measure for entropies is the
relative entropy. The relative entropy between the left- and right-hand side of
(5) defines the mutual information of a multidimensional random variable:

OSMI{y}I—H{y}JrZH{yz’} (6)

Redundancy is then defined as the normalized mutual information R{y} =
MI{y}/H{y}. Note that (5) is equivalent to MI{y} = 0 (Atick & Redlich,
1992). How does this relates to linear decorrelation used in linear PCA? In
the case of Gaussian distributions diagonalizing the correlation matrix of the
linearly transformed variables has proven to be equivalent to reducing redun-
dancy (Papoulis, 1991). But for general distributions decorrelation does not
imply statistical independence of the coordinates. Starting from the principle
of minimum redundancy Deco and Brauer (1994) formulated criteria for higher
order decorrelation. Another approach with higher order cumulants for the case
of linear transformations was studied by (Comon, 1994).

developed in full generality by Feng and Qin (1985). A proof of the representation (4) and
a discussion of its role for the numerical integration of Hamiltonian Systems can be found in

(Miesbach & Pesch, 1992)



In this work we make use of the more general principle of redundancy re-
duction instead of pairwise decorrelation. Combining this with the preservation
of the input information by using symplectic maps, we arrive at the principle
of feature extraction formulated by Barlow (1959, 1989). This principle states,
that the preprocessing of cognition tries to find a factorial representation of the
environment while preserving the information contained in the sensory stimulus.

In order to find a factorial representation in the output coordinates , we use
the mutual information (6) as a cost function. Since for the symplectic map
H{x} = H{y} holds, we are left with the task of minimizing the sum of the
single coordinate entropies (second term in the left-hand side of (6)). Thus
we get not involved in computational expensive multi-coordinate statistics. On
the other hand, we need an analytic expression or at least a measurement of
the single coordinate entropies. Since we are given only a set of data points,
drawn according to the output distributions, this is still a difficult task. But
fortunately we know a feasible upper bound for these entropies,

V< MIy} = —H{x}-Y /R Plyi)inP(y:) dys (7)

IN

—H{xh =Y /R Py InG(ys) dyi (8)

= —H{X}—I— ln 27) Z/ () (s >)2di‘/z’ 9)

where (y;) fR (ys) y; dy;. The inequality in (7) expresses the positiveness
of the relative entropy between two arbitrary distributions, in that case between
P and G where we used the Gaussian distribution G(y) = 1//7exp(—(y —
(y))?). The first two terms of the expression (9) are constants. Thus we can
reduce the problem of statistical decorrelation to the problem of minimizing the
upper bound of the entropies > . H{y;}, i.e. the sum of the output variances.
We could also use gaussian distributions G(y;) with different variances for each
coordinate, namely the variance of the distributions P(y;). This is the idea
of the second Gibbs theorem. This theorem gives the entropy of the Gaussian
distribution having the variance of P(y;) as an upper bound for the entropy
P(y). In this case the upper bound is the sum of the logarithms of the variances:

MI{y) < ~H{x) + L in(2re) + Zm(/ )0 = () i) (10)

These two different cost functions yield slightly different learning goals. In
case of constant volume the direct sum of variances (9) favors equal variances in
the different coordinates, while the sum of the logarithm of the variances (10)



does not favor any special scaling between the variances. In all experiments
we used cost function (9). It might be seen as a strong simplification, to use
only the second order moment for minimizing the entropy. One should rather
try to include higher order cumulants to get a more accurate estimate of the
distributions and therefore of the corresponding entropies. But in a first stage
we want to restrict to a computationally efficient solution. Beside of this, if the
transformation y = f(x) is flexible enough this cost function will tend to pro-
duce gaussian distributions at the output. With a variational approach it can be
shown that under the constraint of constant entropy a circular gaussian distri-
bution extremizes the sum of variances. If the transformation is general enough
to assume arbitrary output distribution, then the cost function (9) can be seen
as a functional of P(y) to be extremized. We introduce the side conditions
Jpn P(y)dy = 1 and [, P(y) In P(y)dy = const with Lagrangian multipliers
A1 and Az, The functional - say J{P(y)} - now reads,

HPEY = [ (PGS + 0P+ AP P dy (1)

The Fuler-Lagrange equation is then,

711 + A1+ Az(In P(y) +1) =0 (12)
which gives together with the normalization condition,

1

7TA2

P(y) = e IY N2/ 2z (13)

Therefore the circular gaussian distribution is optimal and the training will
tend to transform the input distribution into a gaussian distribution. This will
be useful for the density estimation addressed in chapter five.

4  Optimizing a parametrized symplectic map

As we pointed out at the end of chapter two, we use a connectionist network
structure that has shown to perform a general function approximation in order
to have a flexible expression of the scalar function S(z) in (4). Consider now the
specific class of symplectic maps that results from using a conventional network
structure for the scalar function S(z) in (4),

_ 9 o(xty
y_X+J6zS< 5 ,W,W) (14)
S(z,w, W) =w-g(Wz) (15)

Note that if S(z) is a quadratic function, (14) represents a linear transfor-
mation. We parametrize S(z, w, W) by the network parameters w € R™ and



W e R™ x R™. For J to be well defined in (4), has n to be an even number.
This 1s not a severe restriction, because one may add a dummy coordinate to
the problem if necessary. The function ¢ applies to each component of the vec-
tor Wz and may be chosen as a sigmoidal shaped function. In this case, the
function (15) realizes a 3-layer perceptron.

There are different ways to solve (14) numerically. The fastest algorithm
would be a Newton method for finding the zeros of F(y) = —y +x+ JIS((x +
v)/2)/0z. The other, rather straight forward method is to regard equations
(14) as a fixed-point iteration:

0z 2

And finally we could use gradient methods such as conjugate gradient for
minimizing || F(y)||>. All these methods should start at y(0) = x since the
solutions will then yield a mapping “nearest” to the identity map. The metric
defining the term “near” is determined by (15) but is hard to analyze. The
iteration will succeed, if the starting point lies in the domain of attraction
of the corresponding algorithm. In general this domain of attraction will be
smaller with increasing dimension and with growing ||w/|| and if g is a monotone
increasing function, then also with growing ||1¥]|.

In the simulations fixed-point iteration and conjugate gradient has shown to
be quite competitive with each other, while Newton methods exhibit poor stabil-
ity. Fixed-point iteration is fast, since it converged mostly within 30 iterations,
but failed to converge as the learning process increases the norms of the connec-
tion weights. Note that a necessary, local condition for fixed-point iteration to
converge is |0y (t + 1)/8y(t)|] < 1. Conjugate gradient converges mostly within
10 steps but not necessarily to the desired global minimum solution. A more sta-
ble, globally convergent technique is the homotopy-continuation method (Stoer
& Bulirsch, 1993) where starting from a known solution one gradually modifies
the nonlinear equation while successively finding the new solutions. Usually
one starts at the identity map and introduces the non-linearity gradually by a
parameter «. In our case we have to find the solution of

0 x4+ y(t
—y+x+aJ—5 7y(),W,W
0z 2
for a given a. During the homotopy-continuation we gradually increase
a = 0 — 1 with step size A, while using the solutions of the recent relaxation
y(o0, @) as a the starting point of the next minimization y(0, « + A«):

y@+m:x+Jﬁﬂ<§iﬁwa@ (16)

2:0 (17)

¥(0.a + Aa) = y(o0,a) (18)

This method may even accelerate the search, since for each step of increasing
the parameter the new solution of (17) can be found in a few steps. On the
other hand the gradual increase of the non-linearity helps to start always in



the domain of attraction of the global solution. But still, there 1s no guarantee
for convergence. One may pass a bifurcation point and follow the path of a
degenerating solution i.e. a solution that evolves to a relative minimum. For the
training patterns we have a very natural way of staying in the basin of attraction.
We keep track of the solutions of (17) while we modify the parameters that we
incrementally change according our learning rule, i.e. we start the search for
the solutions of (17) with new weight parameters (w + Aw, W + AW )at the
previous solution y (oo, w, W):

vy(O,w+ Aw, W+ AW) = y(co,w, W) (19)

This homotopy was used for the training, since we have natural access to the
weight path, while the first homotopy is used for new data points not belonging
to the original training set.

Corresponding to the cost function (9) we need the derivatives of the output,
with respect to a parameter p in order to perform gradient descent:

Ap = —egpMI=—55(lly - ¥

= () ) ()

The parameter p represents one of the components of w or W. As usual, a
step size € was introduced. The derivatives are given by a linear equation:

2
CAREAS ( oS ) (21)
X4y

dp 020z

where 925/92? is the Hessian matrix of S(z) at z = (x +y)/2. This linear
equation yields the derivatives at fixed x and y corresponding to (14).

The computational cost of finding a solution of (14) is O(nmt) were ¢
represents the number of steps the equation has to be iterated until conver-
gence (in practice 10 < t < 200). The computational complexity of solv-
ing (21) for all n? + m parameters and performing the products in (20) is
O((n? + m)(1 + n + n?/2) + n3). One may think of approximations of (20)
in order to update the parameters after each of N data points, but we per-
formed the exact batch gradient descent, which implies an additional factor N
in the computational cost of each gradient update step.

(20)

Jdy 928
X+y Op  0zdp

5 Density estimation and novelty detection

The proposed paradigm implements Barlow’s redundancy reduction principle
for unsupervised feature extraction. The resulting factorial representation of
the joint probability distribution presumably facilitates density estimation and



will be applied now especially to novelty detection. If one knows that a joint dis-
tribution factorizes, then the problem of finding a estimation of the joint proba-
bility in an -dimensional space reduces to the task of finding the one-dimensional
probability distributions . Once we found the estimate we can always calculate
the corresponding distribution in the input space, since the symplectic map is
invertible and differentiable. Corresponding to Papoulis (1991)

Plx) — P(y) _ [T P(y:) (22)
det (f’g—_l) det (g_x)
Y /ly=f(x) Y/ ly=f(x)

The Jacobian of the inverse map is given by linear equations analogous
to (21). But more likely than calculating the original distribution, in most
applications one would map the entire problem to the new factorial space.

As we stated before the gaussian upper bound cost function favors at the
output gaussian distributions with equal variance, provided that the symplectic
map is general enough to transform the given distribution. Although not perfect,
figure 1 demonstrates that ability.

If the training succeeds, we might estimate the distributions by the straight
forward assumption of independent gaussian distributions at the output:

n

Pix) =[] — e (— (v ;;;m ) (23)

)

A possible limitation of symplectic maps is continuity. In figure 2 the two ‘4’
clusters of the training distribution can’t be mapped into a unimodal gaussian
distribution without having a discontinuity in the map. But even in that case,
one is still free to choose a more suitable one-dimensional estimation technique,
than the simple approximation by a single gaussian distribution.

Finally, we want to address the closely related task of novelty detection.
Given a set of samples corresponding to e priory distribution one has to decide
if a new sample correspond to that distribution or not. Therefore, the question
1s: “how probable is an observed new sample according to what we have seen
so far?”. Given a certain decision threshold, we would like to know the corre-
sponding contour of the density of the data point previously seen. If the contour
for an arbitrary threshold is required, we need the complete estimation of the
density. As a solution to that problem we propose the presented symplectic re-
dundancy reduction with the straightforward gaussian density estimation (23).
The decision surface for the novelty detection is then just a hypersphere in the
output of the symplectic map after reducing the redundancy according to the
given sample set.

Figure 2 demonstrates that idea. The symplectic map was trained to reduce
redundancy on the samples ‘“+’. The samples ‘0’ are to be discriminated. It
is obvious that taking a circular decision measure at the output distribution

10



Figure 1: Top: Nonlinear correlated and non gaussian joint input distribution.
Bottom: After training the symplectic map the distribution is transformed into
almost independent normal distributions. Cost function was reduced by 68%
within 300 training steps. The “netwodll” contained 6 parameters.



Figure 2: ‘4’ training samples. ‘0’ test samples. Left: Input signals; Right:
Output signals of the trained symplectic map. The symplectic map partially
transforms dual modal training distribution into unimodal distribution. The
map needs 6 parameters. Perfect transformation would require a singularity of
the map between the two spots and is therefore not possible with a symplectic
map. Samples not corresponding to the training set, are mapped far away
from the gap area, or remain not substantially changed within regions where no
training samples are found. Ellipse and circle indicates possible classification
boundaries for the plus samples.
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will give a fair solution. Although for this illustrative example we could obtain
also good results with a simple gaussian mixture (Duda & Hart, 1973) of two
gaussian spots, we want to show the performance of the proposed technique.
The usual performance measure for a binary classification problem is the rate of
“miss classifications” and the rate of “false alarms” as shown in figure 3. Miss
classification occurs when a sample that belongs to the “novel” set is missed and
classified as normal. The opposite case where a “normal” sample is classified as
“novel” is called a false alarm (see figure 3, left).

Novelty detections is a explicitly unsupervised task. It can also be under-
stood as a two class decision making, where only one class is known. During
training (i.e. finding the right decision surface) one is not allowed to use the dis-
tribution of “novel” samples, because in practise this distribution is unknown
to us. If somebody would give us that knowledge, we could use a plenty of
known supervised classification techniques. But still, during the design phase of
any novelty detection algorithm we need to have the distribution of the “novel”
samples in order to measure its performance and to compare it with others.

If the system performs well, after removing the nonlinear statistical depen-
dency of the training distribution, and being left with only gaussian distribu-
tions, there is nothing we can do further unsupervised. At that point we might
have a perfect representation of what is known. To go further we need to have
some knowledge about the “novel” distribution. That knowledge might be im-
plicit, e.g. a performance curve like the one in figure 3 which tell us, that for
the given “normal” / “novel” distributions a given algorithm work better than
an other. In that example the knowledge consists in the information, which
of the extracted independent gaussian features separates the both distributions
better (as demonstrated in figure 3, right). There one coordinate (x-axis) of the
feature space basically represents noise to the decision we want to take, while
the important information in order to separate the distributions is in the other
coordinate (y-axis). This illustrative example demonstrate how noise and useful
information can only be recognized as such, if we have some kind of supervision
(performance of a decision algorithm).

This justifies again our approach of preserving the information by a map, if
it is trained completely unsupervised. Unsupervised training without any other
knowledge should not delete information.

6 Conclusions

We proposed a technique for finding a nonlinear transformation that produces a
statistically independent representation of a probability distribution. This fea-
ture extraction in terms of minimal mutual information generalizes the decor-
relation criterion of linear PCA to higher order but single coordinate statistics.
In order to obtain a computationally feasible criteria we restricted ourselves in
this paper to second order statistic. Future work will extend this paradigm to
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Figure 3: Rate of miss classification and false alarm for the example of figure
2. The ‘4’ training set 1s regarded as “normal” and the ‘o’ test samples are to
be classified as “novel”. We used in both cases (input and output) a elliptical
distance measure as decision criteria for novelty, i.e. we classify as “normal” all
points laying within an elliptical area around the center of the “normal” training
set. All others are classified as “novel”. The decreasing curve gives the false
alarm rate, while the increasing curve denote the rate of missing the “novel”
data points. The crossing point of this to error rates defines the minimum error
rate, which gives a performance measure for the quality of the algorithm. Left:
Solid and dashed lines correspond to the decision ellipse and circle in figure
2 respectively. Therefore the solid lines show the performance in the input
space and the dashed lines the performance at the output of the symplectic
transformation. Obviously minimum error rate is much smaller for the second.
Right: Consider again figure 2. Now the right spot of the ’o’ test set was not
considered for the classification. The training set remained the same. Now
solid lines correspond to the elliptical measure in both directions. Dashed lines
correspond to measure in the y-axis direction only. In this way knowledge
about which coordinates contains the desired information for classification can
be obtained.
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higher order single coordinate statistics. In comparison with other approaches
we believe that the volume conserving nonlinear transformations are the infor-
mation theoretic most meaningful class of nonlinear transformations that should
be considered in statistically independent feature extraction. The approach of
implicit symplectic maps represents a large class of such volume conserving non-
linear transforms that may be able to capture the nonlinear submanifold that
underlies the environmental data. For these two reasons explicit volume con-
serving maps should be favored against other nonlinear approaches, were the
transmission of information is guaranteed by heuristic penalty terms. We be-
lieve that almost like PCA this technique will have numerous applications in
various machine learning fields. One possible application of density estimation
and novelty detection has been outlined in this paper, and demonstrated again
the importance of information preservation.
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