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Reconstruction of cone-beam projections from Compton scattered data 
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Abstract 
The problem of reconstructing a 3D source distribution 

from Compton scattered data can be separated into two 
tasks. First, the angular distribution of line projections at 
different observation points within the detector volume are 
reconstructed. Then, reconstruction techniques are applied 
to the resulting cone-beam projections to synthesize the 3D 
source distribution. This paper describes an analytic solution 
for the first, yet unsolved, task. Building on the convolution 
theorem in spherical coordinates, a back-projection and 
inverse filtering technique in terms of spherical harmonics 
is formulated. The rotation invariance of the point response 
of the back-projection in spherical coordinates is proved; 
and the corresponding inverse filter function is derived. The 
resulting filtered back-projection algorithm then consists of a 
summation over all detected events of fixed and known event 
response functions. Measurement errors, which for Compton 
scatter detectors are typically different for each detected event, 
can easily be accounted for in the proposed algorithm. The 
computational cost of the algorithm is O ( N T 2 ) ,  where N is 
the number of detected events and T / T  is the desired angular 
resolution. 

I. INTRODUCTION 
The use of Compton scatter events for imaging in nuclear 

medicine was first proposed in [ 11. The information collected 
in a Compton event includes the location where a primary 
y-quantum is scattered, the energy transferred to a recoil 
electron, and the direction of the Compton scattered secondary 
y-quantum. A scatter angle can be computed from the 
transferred energy; thus, for a given event, the origin of the 
primary quantum can be determined to lie somewhere on a 
cone-surface (see Figure 1). This technique is sometimes 
referred to as electronic collimation [2, 3, 4, 51, because 
measurement of the scatter angle, in a sense, acts as a 
collimator in determining the direction of arrival. There 
are trade-offs in using electronic collimation rather than a 
mechanical collimator. Electronic collimation using Compton 
scatter holds the promise of a much larger event count [6]; 
however each event will contain less information, since 
the origin of the primary quantum can only be determined 
to lie within a cone-surface, rather than along a line, as 
with a physical collimator. Lack of a physical collimator 
further complicates reconstruction because without a physical 
collimator, angular resolution due to measurement errors can 
vary from event to event. 

'This work was mostly developed during 1995 while working at 
the Imaging Department of Siemens Corporate Research, 755 College 
Road East, Princeton, NJ 08540 

Various approaches have been proposed to compute the 
generating 3D source distribution from a collection of scattered 
Compton events. A pioneer in the concept of the Compton 
camera, Singh, has presented a series of reconstruction methods 
mainly concerned with numerical methods like ML, EM, ART, 
etc. IS ,  41. These algorithms, in general, require binning of the 
data. However, due to the dimensionality of the measurement 
space (six dimensions) this may not be an optimal approach. 
Instead, event-based reconstruction techniques which avoid 
binning, at least in some coordinates, may be preferable. Along 
these lines, [7, 81 present, in the context of PET, a general 
list-mode maximum likelihood estimation algorithm which is 
well-suited to both the dimensionality and to the measurement 
errors in the Compton scatter measurement space. 

Analytic, rather than numeric solutions have also been 
proposed to solve the 3D source reconstruction problem 
[9, 10, 111. In all instances, the problem is separated into 
two steps. First, cone-beam or plane projections of the 
source at different observations points within the detector 
volume are reconstructed from the measured data. Then 
synthesis techniques from the field of Computed Tomography 
are applied to the resulting projections to generate the 3D 
source distribution. Cree and Bones [ 101 have developed 
an analytic expression for direct reconstruction, by severely 
limiting the accepted events to only those with secondary 
y-quanta perpendicular to a detector array. Basko et al. [ 111 
use spherical harmonics to convert cone-surface projections 
into plane projections; however, they ignore the dependency 
of the scatter likelihood on the scatter angles given by the 
Klein-Nishina distribution, and therefore fail to account for a 
crucial property of Compton scatter. 

In this paper we suggest a similar two-step approach 
to the 3D source reconstruction problem. In the first step 
we use spherical harmonics to recover cone-beams from 
cone-surface projections. In contrast to [ 1 I], our method does 
not require costly decomposition into spherical harmonics 
during reconstruction. Instead, motivated by the work of 
Krzyzanowski [SI, we use the deconvolution in spherical 
coordinates ', to obtain a filtered back-projection technique 
which generates the cone-beam projections directly from the 
Compton scattered data. The inverse point-spread function 
in spherical harmonics, (referred to as the event response 
function) is fixed and can be computed prior to reconstruction. 
To compute the 3D source distribution from the projections, we 
propose cone-beam reconstruction techniques [ 12, 13, 14, 151; 
these are admittedly more complex than the simple Radon 
inversion used in [ 113. Our algorithm goes beyond previous 
approaches in that it accounts for measurement errors which 

2The spherical deconvolution equation is derived in Appendix A. 
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vary from event to event (an additional difficulty that arises for 
any real Compton scatter detectors). 
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x 

Figure 1: Cone surface projection of a Compton scattering event. 
Positions indicated with an * represent locations of an emission of 
primary quantum, location of scatter, and detection of the secondary 
quantum. The orientations of the primary and secondary quanta 
are 01 and 022, respectively. The location of the scattering event, 
the absorption of the secondary quantum, and the scatter angle w2 

can be measured, and together determine the origin point of the 
emission of the primary quantum to lie within the cone-surface shown. 
Reconstruction for events scattered in a given volume element will be 
considered. 

In Section I1 the idealized imaging process for a given 
scattering volume element in the detector is derived, i.e., the 
transformation from cone-beam projections to cone-surface 
projections. In Section 111 we demonstrate that this process 
represents a convolution in spherical coordinates; and we 
introduce the inversion of such a spherical convolution using 
spherical harmonics. In Section IV the back-projection of a 
cone-surface projection is presented, and the rotation invariance 
of the overall transfer function, from cone-beam projections to 
summation image, is demonstrated. The resulting summation 
image can then be inverted with a spherical deconvolution. 
Finally, in Section V the back-projection and inverse filtering 
are combined into a single filtered back-projection procedure. 
The resulting algorithm is used to reconstruct a simple source 
distribution from simulated Compton data in section VI. 
Appendix A derives the convolution theorem for spherical 
harmonics; and the corresponding deconvolution with 
Legendre polynomials is derived in Appendix B. 

11. MEASUREMENTS AND IMAGE GENERATION 

Consider a particular volume element of a detector where 
Compton scattering events are being observed (see Figure 1). 
Our discussion throughout this paper will focus on such a 
single volume element in the detector. A particular direction 
from which primary y-quanta originate can be described by the 
angles (PI, (azimuth), and 291 (elevation). Using 0 1  to denote 
the angle pair (91, &), the density of the y-quanta detected 
from direction 01 is denoted by g(fl1). Thus, g(01)  gives the 
projection of the three dimensional source distribution along 
the line which intersects the volume element from direction 
01; i.e., g(01) gives the cone-beam projections. A Compton 
camera measures the directions 0 2  of the scattered secondary 
y-quanta. By also measuring the energy E, of the recoil 
electron, the kinematics of Compton scattering gives us the 
scatter angle w2, 

where y = hv/m,c2, hu is the energy of the primary 
y-quantum and m,c2 = 5 l lkeV [16]. The Compton camera 
therefore collects an image intensity distribution f(cp2, d2, w2) 

over three angles for every volume element in the detector. 
(Issues related to measurement errors will be ignored for now, 
and will be addressed in Sections IV and V.) 

To derive an analytic solution to the reconstruction problem, 
we must first derive an expression that describes how a 
measured image f ( c p 2 ,  ’L92, w2) generates from a given angular 
distribution of line projections g(R1). Let ~ ( 0 2 ,  w2lfl1) denote 
the probability density of making the observation R2 , w2, given 
that the event originated from direction 0 1 .  We can then write: 

Denoting the angle Lf11R2 = w ,  and the azimuth with cp, such 
that dfl1 = dcpd(cos w ) ,  we can write: 

17(%,w21fld = p(w,Cp,w2) (3) 

= (2r)-lp(w, 4 (4) 

= (2+lP(w2lw)P(w) ( 5 )  
= ( ~ T ) - ~ S ( C O S W ~  - C O S W ) ~ ( W ) .  ( 6 )  

For Eq. (3) we have assumed that the scatter distribution does 
not depend on the absolute direction of the incident quantum, 
and in Eq. (4) it is assumed that it is independent of the azimuth. 
Both of these assumptions are strictly met by Compton scatter. 
However, depending on the detector geometry, note that these 
assumptions may be invalid in some regions of the detector, due 
to boundary effects. 

The probability distribution p ( w )  of measuring an event with 
scatter angle w is proportional to the differential cross-section, 
h(cos w )  

du 
d o 2  

p ( w )  0; - oc h ( c 0 s w )  ; (7) 

and variations in detector efficiency as a function of scatter 
angle or position in detector volume (arising from detector 
architecture) can be accounted for in the definition of h( cos U ) .  

Given h(cos U ) ,  Eq.(2) for image formation now becomes: 

f ( 0 2 , w z )  = J’dQ1g(f11)h(cosw)G(cosw2 - c o s w ) .  (8) 

The proportionality factor (27r d(cos w)h(cos U))-’ can be 
absorbed into the definition of f or g. In order to reconstruct 
for every point in the detector volume, the distribution of line 
projections g(fl1) from the measured data f ( f l , , w ~ ) ,  Eq.(8) 
must be inverted. Given g(fl1) for a manifold of scatter points, 
a cone-beam projection algorithm can then be used to recover 
the 3 0  source distribution. 

111. SPHERICAL DECONVOLUTION 

First consider the measured image intensity f(02, w2) 

summed over all measured scatter angles w2 : 



Applying this integration to Eq. (8) we obtain: 

f(0,) = J d f l l g ( O ~ ) h ( c o s w )  (10) 

This integration can be performed analytically by applying the 
following spherical trigonometry relation between 0 1  and 0, : 

cos w = cos 291 cos 192 + sin 191  sin I92cos(yq - cp2) . (1 1) 
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Compton scatter cross section h$os(in)) 

Eq.(lO) can be interpreted as a convolution in the spherical 
coordinate space, with convolution kernel h (cos w ) .  Since 
the convolution kernel depends only on the angular distance 
between 01 and 0 2 ,  this integral equation is shift invariant 
in the angular space (rotationally invariant). Furthermore, 
it can be shown (see Appendix A) that, by expanding both 
sides of equation (10) in the appropriate system of orthogonal 
basis functions, the right side of Eq.(lO) is transformed into 
a product. This is analogous to the convolution theorem in 
Cartesian coordinates. 

hv= 140KeV 
hv= 360KeV 
hv= 520KeV 

\ \  

\.. 
. , - _ -  - _ - -  - - -  - _ - _ _ - - -  
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(3)  in rad 
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i o  15 20 
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4 
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In this context, the following deconvolution formula can be Figure 2: Top: differential cross section h, (w)  of Compton scattering 
given in Eq. (29) for three primary quantum Energies 140keV, 
360keV and 5lllceV. Bottom: First 40 corresponding expansion 
coefficients H: in the base of Legendre polynomials, plotted only for 

derived (see Appendix B): 

g(01)  = / df12f(02)h-1(Cos w )  , (I2) 140keV 

where measured at coordinates 0 2 ,  w2 could have originated from 
any direction 01, so long as 01 forms an angle w2 with 

h-l(cosw) = (y) H ,  , (13) 0 2 .  This set of possible directions form a cone-surface of 
n=O ambiguity. Buck-projection entails assigning to all directions 

0; which might have contributed to a particular f ( O , , w ~ ) ,  
the same image intensity: f ( 0 ~ , w ~ ) d ( c o s w 2  - cosw') ,  where 

P, (cos w )  CO 2 

the expansion coefficients H ,  are given by 

H,, = ~ 2n + / d(cosw)lb(cosw)P,(cosw),  (14) 

and the basis functions Pn(cos w )  are Legendre polynomials. 
This deconvolution formula can be used to reconstruct the 
distribution of line projections g ( 0 , ) .  

However, in employing Eq.( 13), we encounter a difficulty 
typical in inverse filtering: the presence of the expansion 
coefficients H, in the denominator. To avoid instability, 
these coefficients must be significantly different from 
zero. Unfortunately, as seen in Figure 2, the inverse of 
the convolution kernel corresponding to the differential 
cross-section of Compton scatter (cf. Eq. (29)) will have some 

2 
w' = L R i 0 2 .  Back-projections here refer to projecting back 
all cones with their vertex laying within a single volume 
element as indicated in figure 3. 

vanishing expansion 'coefficients. In fact, only the first few 
coefficients give finite values. 

To solve this problem, inverse filtering techniques suggest 
generation of a summation image by back projection of 

back-projections usually satisfies a linear convolution like that 
in Eq.(lO). Once the overall transfer function from source to 
summation image has been computed, one can use inverse 
filtering according to Eqs. (12)-( 14). 

IV. BACK-PRoJECT1oN AND INVERSE 

Figure 3: The summation image g'(n\) (shaded) can be interpreted 
as summing intensities f(&, w2) (bold) onto thc unit sphere along 
circles with center oa and open,ng w 2 ,  

the measured events 1171. The summation image Of the The corresponding ,yumnzution inluge g'(fli) of the back- 
projections is defined as: 

g ' (O; )  = / d(cosw2) / dn2f(02, w2)s(cosw2 - c o s w ' ) .  

(15) 

We will now demonstrate that the summation image can 
be expressed by an angular convolution of the line projections 
g(01) with an appropriate point spread function. This can then 

The main problem confronted in the angular reconstruction 
is ambiguity in the event measurements. A particular event 
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be used to reconstruct g(Q1) from g ' ( R i )  by means of the 
deconvolution of Eq.(12). 

First we will calculate the overall response function 
for a point-like distribution in angular space, that is, the 
point spread function of the scatter plus back-projection. 
The original distribution of line projections is given by 
g a ; ( R l )  = S(cos61 - cos6?)6('pl - 9;). The index 0; 
denotes that this is a particular distribution corresponding to 
an angular point located at fl;. Inserting this into Eq.(8) one 
obtains the observable distribution f ~ ;  ( R 2 ,  w2) : 

fa; ( Q a ,  w2) 

= / d(cos'Lg1)d'p1G(cos61 - cos6;)S('p1 - 'p;) 

=J d ( c o s 8 ~ ) d ' p ~ ~ ( c o s 8 ~  - c o s ~ ; ) s ( ' p ~  - 9;) 

h(c0s w)S(cos w - cos wa) (16) 

h(cos.191 cos.192 + sin61 sin82 cos(cp1 - pa)) 
&(cos 61 cos 8 2  + sin 191 sin 6 2  cos(cpl - 9 2 )  - cos w 2 )  

(17) 
= h(cos 19; cos 6 2  + sin SI  sin 62 cos(9; - pa)) 

G(cos6T cos62 + sin6T sin192 cos('pT - c p z )  - coswa) 
(18) 

= h(c0s w*)b(cos w* - cos w2) , (19) 

where Eq.( l l )  for w ,  and the analogous expression for 
w* = LRTR2 have been used. Inserting this result into Eq.(15) 
one obtains the desired point spread function in the summation 
image: 

g&(Ri) = J ' d ( c o s q ) f d R 2 h ( c o s w * )  

&(cosw* - c o s w ~ ) s ( c o s w ~  - cosw') (20) 

= J 'dR2h(cosw*)S(cosw* - cosw') .  (21) 

direction that divides the angle between flT and 0; be the 
axis of reference for measuring azimuth angles such as 'p2 

(vertical arrow in Figure 4). Let the axis orthogonal to that, and 
coplanar with 0; and R', be the axis of reference for measuring 
elevation angles such as 62 (horizontal arrow in Figure 4). 
For this choice of coordinate frame we have 'p* = 'p' = 0, 
8; = n/2  + w ' * / 2  and Si = n / 2  - w'*/2. The &function in 
Eq.(21) limits the integration to a fixed 62 = n/2  and arbitrary 
' p 2  E [0, an]. Inserting this into the relations for cosw* and 
cos w' in Eq.( 1 1) we obtain: 

w'* G(cos192) 
S (COSW* - cosw') = S(cos622sin -) = ___ * (22) 2 2 s i n T  

Now integration over 62 can be performed easily: 

(23) 
S(cos.192) J' 2 sin $ g& (0:) = d(cosl92)dp2h(cosw*)--- 

= hbP(COSW'*). (26) 

Note that the integration above produces a function 
hb,(cos w ' * )  which depends only on the angle w'* = LfliR; 
between the orientation of the angular point source Cl: and the 
observation point 0; in the summation image; &(cos U ' * )  

is shift invariant in the angular space. The summation image 
point spread function is shown in Figure 5.  

An arbitrary source distribution g(R1) can be understood 
as a linear superposition of point sources located at R1 
and weighting g(R1).  A point source generates in the 
summation image the point spread function hb,(cos w l ) ,  where 
w1 = LRlR;. The summation image of the distribution 
g(R1) is then a linear superposition of point spread function 
hbp (cos w l )  with weighting g (01) : 

g'(Q2:)  = J' d f l l g ( ~ l ) ~ b , ( c o s w l ) ,  (27) 

g ( % )  = / dn :g ' (a ; )h ; ; ( cosw , )~  (28) 

This is now a convolution of the form of Eq.(lO), and can be 
inverted by the deconvolution described in Eqs. (12)-( 14) as 
follows: 

The corresponding expansion coefficients HkP of the Legendre 
polynomial decomposition can be calculated numerically, at 
fairly low computational cost, since they need to be calculated 
only once. 

Figure 4: The bold solid line shows the path along which thc For unrestricted Compton scatter, the differential 
integration (with respect to 0 2 )  for h b p  in Eq.(21) is performed. cross-section h(cos w )  convolution kernel of Eq.(23) is given 

by the Klein-Nishina distribution [ 161 (shown in Figure 2): 
Since the integral (21) must be calculated for a fixed set 

the integration parameters R2 = 'p2,82 as follows. Let the 

y2(1  -cos u ) 2  

+ cos2 + l+y(l-cosu)  (29) of angles R;,R',, we may adapt the coordinate system for h(cosw) = h,(cosw) (I + y( l  - cosw))2 
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Back maiection PSF hbp(cos(si)) 

-3 -2 -1 0 1 2 3 
(I) in rad 

Legendre cmfficients of back-projection PSF 

I 
5 10 15 20 25 30 35 40 

5.51 

n 

Figure 5: Top: Point spread function hbp in the angular summation 
image for three different primary quantum Encrgies 140keV, 360keV 
and 520keV. Bottom: First 40 expansion cocfficienls H? in the 
base of Legendre polynomials, plotted only for 140keV. With this 
coefficients the deconvolution kernel hb;l’ for the inverse filtering can 
be calculated. 

Surprisingly, even for this complex form for h( cos w ) ,  the 
resulting integral can be computed in closed form; however, for 
simplicity, this computation will be omitted here. In Figure 5 
it can be seen that for the Compton scatter the H,bP converge 
after a few coefficients to a constant value. Fortunately, now 
they are non-zero and the convolution in Eq. (27) can easily be 
inverted using the deconvolution kernel defined as in Eq. (13). 
Given a convolution kernel h(cosw)  chosen to account for 
detector geometry and sensitivity, the integral in Eq.(23) can be 
computed numerically. This computation could be performed 
once off-line, before reconstruction. 

A few remarks concerning measurement error are in order. 
In principle, it is possible to include measurement errors in the 
point spread function hbp. To achieve this, one must convolve 
fn; (R2, w2) with a measurement error density representing 
the detector accuracy, e.g., the product of zero mean normal 
distributions with standard deviations AB2, Ay2,  and A w 2 .  
Since h,(cosw*) is a slowly varying function it is conceivable 
that, for small measurement errors, this convolution result 
could be reasonably approximated in Eq.( 19), by replacing the 
6() function by a zero mean normal with standard deviation 
d m .  The same substitution would follow in Eq.(23). 
The resulting integrals can then be computed for the particular 
detector architecture once, if not analytically, then numerically. 
This may be in particular needed when including more realistic 
noise models such as Doppler broadening discussed in detail in 
[GI. 

The net effect of this substitution on the point spread 
function hhp is an added spread of d m .  As a 
result, the corresponding expansion coefficients H,bp are 
somewhat modified for small n, and vanish for n larger than 

the angular resolution T = The inversion 
procedure remains the same, but uses the modified expansion 
coefficients, determined for the particular detector architecture 
and accuracy. Due to the vanishing coefficients at higher 
orders, the inversion has to be low-pass limited. In this way the 
resolution of the recovered cone-beam projections is limited by 
the measurement errors. 

v. FILTERED BACK-PROJECTION 

The procedure described in the previous section for 
reconstructing cone-beam projections from Compton 
cone-surface projections consists of generation of a 
summation image, followed by spherical deconvolution. The’ 
deconvolution can be performed either directly in the angular 
space, or by transforming into the spherical harmonics domain, 
then filtering, then inverse transforming. 

It is possible, however, to combine the back-projection of 
Eq.( 15) and the deconvolution of Eq.(28) into the following. 
single filtered back-projection step that will recover the cone- 
beam projection for a single vertex point: 

= J’ dol, J’ d(cos w 2 )  J’ dR2 

G(cosw2 - cosw’) 

hr: (cos 8 1  cos 8: + sindl sin@ cos(cp1 - 9;)) 

(32) 

= J’ d(cosw2) J’ dR2f(R2,w2) J ’ d d  

= /’d(cosw2) J ’dR2 f (R2 ,w2)R(w ,w2) .  (34) 

hb7f (cos w cos w2 + sin w sin w2 cos(p1 - pi)) 

(33) 

For the integration over t9: on line (32), the z-axis has been 
chosen to point in the 0 2  direction. Then 61 = w ,  6; = w‘,  and 
integration of the &function replaces w’ by w2. We refer to the 
function R ( w ,  w 2 )  as the event response of a Compton event. 

The integration in R ( w , w z )  over pi can be performed 
analytically as follows: 

= 1 dp: hcj (cosw cos w2 + sin w sin w2 cos(p1 - cpi)) 
(35) 

2 n + 1  1 00 

=x(F) n=O * J d p i  

P , (coswcosw~ + sinwsinwz cos(p1 - vi)) (36) 
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An expansion of the Legendre polynomials in terms of spherical 
harmonics is used in line (37); and the integration leading to line 
(38) uses the definition of spherical harmonics (see Eqs. (50) 
and (42) in Appendix A). For a measured distribution having 
bandwidth T ,  the summation over n can be truncated at T .  (See 
Eq.(49) in Appendix A.) 

Event Responce Function 

Figure 6: The event response function R ( w , w ~ ) ,  calculated with 
expansion coefficients H,bp, for primary quantum energy 140lceV. 
The expansion has been truncated at order T = 20. 

In practice, image intensity f ( R 2 ,  w2) will be measured 
at a set of N data points: (pi, @,U;), ..., (pr,  6r, U,"). 

The image intensity can therefore be expressed as a sum 
of S-functions at the measurement points: f (R2 ,wg)  = 

Substituting this expression for f ( & ,  w2) into Eq.(34), we 
xu S ( q 2  - p;)6(cos62 - cosd;)6(cosw2 - cosw;). 

obtain for the reconstructed cone-beam projection g(R1): 

g(%)  = J'd(cosw2) / d R 2 f ( R 2 , w 2 ) R ( w , w 2 )  (39) 

N 

= R ( w V ,  w;) . (40) 
u=L 

Finally, we assign each event a response function on the 
angular space RI ,  parameterized by the measured scatter angle 
w2. Summing these response functions for each event yields 
the filtered back-projection reconstruction. 

As outlined at the end of the previous section, angular 
resolution 7r/T is limited by measurement error. Therefore, 
it is reasonable to truncate the sum in Eq.(38) at n = T ;  and 

thus in the reconstruction of Eq.(40), only 2 T  bins are needed 
for each of the angles 61, and pl. As a result, the overall 
computational cost is O ( N T 2 ) ,  if the event response function 
has been computed prior to reconstruction. 

A serious complication in practical implementations of 
Compton scattering detectors is that every measured event can 
have associated with it a different measurement error. The 
accuracy with which the scatter angle w2 can be determined in 
general depends on the absolute value of the energy A E, of the 
recoil electron; and furthermore, the precision of 0 2  depends 
on the distance of scatter location and absorption. 

The filtered back-projection procedure we have proposed 
in this section has considerable advantages with regards to 
these difficulties. In the back-projection and filtering technique 
outlined in the previous section, only f i z ed  measurement 
errors can be considered. In contrast, with the technique 
described in this section we are free to use different event 
response functions for every event, with different coefficients 
H,bP computed for different measurement errors. If storing 
different event response functions for all possible measurement 
errors at the corresponding resolutions is too expensive, 
one may instead precompute the HkP coefficients only for 
different errors, and then compute the sum in Eq.(40) for every 
event. The computational cost of the filtered back-projection 
algorithm then rises to O( N T 3 ) .  

VI. SIMULATIONS 
The algorithm described in the previous sections has been 

used to reconstruct a simple source distribution from simulated 
data. The present simulation is intended to demonstrate the 
recovery of cone-beam projections from Compton scattered 
data. In order to see the recovered source distribution beyond 
the Poison noise level and the ambiguity of the cone-surface 
projections we simulated a large number of events, in the order 
of lo5,  for a single scatter point (cone-beam vertex point). In 
a realistic detector a much smaller number of scatter events 
for each vertex point is expected. Large total event counts are 
obtained when combining a manifold of scatter points in a 
subsequent cone-beam reconstruction procedure. 

For simplicity a single volume detector is assumed where 
the primary and secondary event are detected anywhere within 
the volume. As a result all possible w2 can be concidered. 
Boundary effects or measurement errors have not been 
simulated. In figure 7 the reconstruction of an artificial source 
is demonstrated. The original cone-beam projections as well 
as its reconstruction are shown as they project on a l m  square 
plane at l m  distance from the vertex point of the cone-beams, 
left and center panels. The line width of the cross shown 
in the figure is 7.7 cm. This corresponds in the center of 
the image to an angle of about 2.4'. Polynoms up to order 
T = 100 have been used in R(w,w2).  This corresponds 
to an angular resolution of A w  = 1.8'. For comparison, a 
naive back-projection without filtering is shown on the right 
panel. There, a Compton event was projected back by adding 
contributions from all events that take on an angle w2 f A w  
to a given pixel. The total contribution of an event to the 
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image should be constant. Therefore, the contributions to 
the summation are normalized by the length of the circle a 
cone-surface traces on the unit sphere, i.e. we normalize the 
contribution of an event by sin2 w2. 

reviewing some of the arguments in the early stages of this 
work. Thanks is also due to Clay Spence for his suggestions 
on how to solve the integral in Eq. (35). I thank also Kwok 
Tam for presenting this work at the 1999 Medical Imaging 
Conference in Seatle. Washinnton. 

Figure 7: Approximately 500,000 Compton scattering events 
have been simulated assuming an idealized noise frec detector and 
the Klein-Nishina scatter distribution at hv = 140KeV. Left: 
Sampled source distribution as projected on a Im square plane at 
lm distance from the vertex point of the cone-beams. The events 
are binned in a 100x100 grid with pixel size corresponding to 1 cm. 
Center: reconstructed source using polynoms up to order T = 100 
corresponding to an angular resolution of 1.8". Right: Naive back- 
projection reconstruction with the same 1.8" resolution. 

VII. SUMMARY 
An analytic technique for reconstruction of cone-beam 

projections from cone-surface projections has been derived. 
This linear procedure is applicable to an idealized detector, 
where the distribution of detected scatter angles is independent 
of the orientation of the incident primary y-quantum. The 
proposed technique goes beyond previous analytic approaches 
also in that it takes into account measurement errors which 
vary from event to event (a typical feature of real Compton 
scatter detectors). 

A filtered back-projection procedure is used for 
reconstruction. With this procedure, every volume element 
in the detector is assigned a two dimensional angular space. 
For every scattering event in a particular volume element, 
an event response function is added in the angular space 
of the volume element. These summed response functions 
yield the cone-beam projections of the three dimensional 
source on that volume element. This procedure is repeated 
for all volume elements within the detector. The resulting 
angular distributions are then used as input data for cone-beam 
algorithms, in order to reconstruct the 3D source distribution. 

Detector geometry determines the effective angular 
distribution of scatter angles, which in turn determines the 
exact shape of the event-response function. The procedure 
for computing the event response function for a given 
angular distribution has been outlined, and is given for the 
Klein-Nishina scatter distribution. A procedure for computing 
event response functions under the condition of varying 
measurement errors has also been outlined. 
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the spherical harmonics xm (0) represent an orthogonal basis 
set spanning a complete function space, f (Cl) can be expanded 
in the form: 

where the Flm denote expansion coefficients of f ,  and the YL 
are the complex conjugate spherical harmonics [ 181, defined in 
terms of the extended Legendre polynomials P,"(cos w) :  

Similarly, a function h(cosw) defined for w E [O,n) can 
be expanded in the basis of orthogonal Legendre polynomials 
pn (cos w )  3 

00 

 COS W )  = HnPn(cos W )  , (43) 
n=O 

where Hn are defined as in Eq.(14). Expanding both sides of 
Eq. (lo), we obtain: 

Flm = J' clR2x:(Q2) J' d01g(0,)h(cosw) (44) 
00 

/ 'dnlg(nl)  J' d ~ q ~ ( n 2 )  Hnpn(cosw) (45) 
n=O 

4n 00 

1 Gnkhlnhmk 
n=O k=-n  

47r 
= Hl- 

21 + lGzm. 

(47) 

(48) 

(49) 
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The following relation between spherical harmonics and 
Legendre polynomials has been used in line (46) above [ 181 : 

m=-1 

Eq. (49) above gives the convolution theorem for spherical 
harmonics expansion. 

If the distribution g ( 0 , )  has limited bandwidth T ,  then 
coefficients higher than order T vanish, i.e., G1, = 0 for 
1 > T .  Likewise, the convolved distribution will have vanishing 
coefficients for order 1 > T .  

B. Spherical deconvolution with Legendre 

Derivation of the deconvolution formula of Eq.(12) is 
presented here. This deconvolution formula can be used to 
invert Eq. (IO), directly in the original angle space, instead of 
in the discrete space of the expansion coefficients, as suggested 
by Eq.(49) above. In order to derive the deconvolution formula, 
first divide Eq.(49) above by Hl a: 

Polynomials 

then transform the equation back into the original angle space: 

(53 )  

This formula can be used to accomplish the deconvolution 
for spherical harmonics specified in Eqs.( 12)-( 14). Note that, 
based on the argument in Appendix A, the summation in this 
deconvolution can be truncated at T .  
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