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Abstract

The efficacy of learning in a classroom depends on how engaged students are with the learn-
ing material. Is it possible to assess students’ engagement, not with questionnaires or surveys,
but directly from their brain activity without distracting them from the material at hand? We
demonstrate that classroom engagement can be measured using students’ neural responses to a
naturalistic stimulus. Many aspects of attentional modulation, which were previously demon-
strated in a laboratory setting are reliably reproduced here in a classroom with portable low-cost
electroencephalography (EEG) recorded simultaneously from multiple students. The present data
suggests that evoked neural responses to video stimulus, known to be modulated by attention,
can be used to assess the engagement of a group of students in real-time.

Introduction

We are interested in quantifying student engagement with digital media in a classroom setting. Mea-
suring student engagement is of importance to both neuroscience and educational research
let al., 2011 Dmochowski et al., 2012; Lahnakoski et al., 2014} [Dmochowski et al., 2014)). Recent
efforts in neuroscience aim to elucidate perceptual and cognitive processes in a more realistic setting
and using naturalistic stimuli (Ringach et al., 2002; [Hasson et al., [2004; Dmochowski et al., |2012).
From an educational perspective we may identify mechanisms that make learning more efficient
(Szafir and Mutlu, |2013), align services better with students needs (Attfield et al., 2011)), or monitor
critical task performance (Lin et al., 2013)).
User engagement has been defined as ‘... the emotional, cognitive and behavioural connection
that exists, at any point in time and possibly over time, between a user and a resource (Attfield et al.
2011). We argue here that student engagement indeed may be quantified on a second-by-second basis
by measuring electroencephalography (EEG) responses during exposure to media stimuli.
Traditional approaches to measuring engagement (O’Brien and Toms, [2013) are based on captur-
ing user behaviour via user interfaces, self-report, or manual annotation. However, increasingly the
tools of cognitive neuroscience are employed (Szafir and Mutlu) [2013). Here we use neural responses
to video to quantify students’ engagement with the content. The work is based on the approach de-
veloped by Dmochowski et al.| (2012). The basic premise is that subjects who are engaged with the
content exhibit reliable neural responses that are correlated across subjects and repetitions within




the same subject. In contrast, a lack of engagement manifests in generally unreliable neural responses
(Ki et all 2016).

The potential uses of engagement detection in the classroom are numerous, e.g., real-time and
summary feedback for the teacher, motivational strategies for increased student engagement, and
screening for impact of teaching materials. To relate the finding on engagement measured with
neural activity (Dmochowski et al.l 2012} 2014; Ki et al.l [2016) to real-time classroom engagement
several issues must be addressed, including: Is it possible to reproduce the detection of engagement
under the adverse conditions of a classroom? Is the detection robust to inter-student variability of the
spatial information processing networks? Can engagement detection be performed with equipment
that is both comfortable and low enough costs to make it a realistic technology for schools? We
have designed a set of experiments to address these issues. Hence, a main goal of the present work
is to determine if student engagement can be quantified in a real-time manner using recordings
of brain activity in a classroom setting using a low-cost, portable EEG system — the Smartphone
Brain Scanner (Stopczynski et all 2014b). On the robustness of the detection scheme we report on
both theoretical and experimental investigations. First we show mathematically that the detection
algorithm is surprisingly robust to the spatial structure of the students brain networks. Secondly
we relate the engagement signal to a very basic visual response, in particular, we demonstrate that
the strength of visually evoked activity is modulated by narrative coherence of the video stimulus —
reflecting the engagement of the group of students.

Methods

Protocol: Four groups of subjects watched the video stimuli in different scenarios. The first group (N = 12,
“Individual”) watched videos individually in an office environment on a tablet computer (Google Nexus 7
tablet, with a 77 (17.8 c¢cm) screen) with earphones. The second group (N = 12) saw the videos in the
same manner, but the scenes of the film stimulus were scrambled in time such that the narrative was lost
(“Scrambled”). This condition aims to demonstrate that the similarity of responses across subjects is not
simply the result of low-level stimulus features (which are identical in the Individual and Scrambled conditions),
but instead, is modulated narrative coherence which presumably engages viewers. Two additional groups
(N = 2% 9) watched the original videos on a screen in classroom (Figure “Joint 1”7 and “Joint 2”), with
sound projected through loudspeakers. An attempt was made to create similar viewing conditions as in the
individual viewing experiment, i.e., lights were dampened and the projected image produced approximately
the same field-of-view (see supplementary materials) for the joint viewing subject. The central question was
whether the viewing condition (i.e., in a group versus individually) influences the level of neural response
reliability across subjects.

Stimuli: The first video clip is a suspenseful excerpt from the short film Bang! You’re Dead (1961)
directed by Alfred Hitchcock. It was selected here because it is know to elicit highly reliable brain activity
across subjects in fMRI (Hasson et al.l [2004) as well as EEG (Dmochowski et al.l [2012). Our second stimulus
was a clip from Sophie’s Choice, earlier used to study fMRI activity in the context of emotionally salient
naturalistic stimuli (Raz et al., 2012). A third non-narrative control video was recorded in a Danish metro
station with several people transported quietly on an escalator. Each video clip had a length of approximately
6 minutes and was shown twice to each subject. For each viewing the order was randomized, but the same
order was used the second time the clips were shown. A combined video was created for each of the six
possible permutations of the order of the clips, starting with a 10 second 43 Hz tone for use in post processing
synchronization, and 20 seconds black screen between each film clip. The total length of the video amounted
to 39 minutes. An additional control stimulus (Scrambled) was created by scrambling the order of the scenes in
Bang! You’re Dead and Sophie’s Choice following previous research (Hasson et al.l |2008; [Dmochowski et al.|
2012)).

Subjects: A total of 42 female subjects were recruited for this study (mean age: 22.4y, age range: 18-
32y), who gave written informed consent prior to the experiment. Among the 42 recordings, 8 subjects were
excluded due to unstable wireless communication that precluded proper synchronization of the data across
subjects (9 in individual viewing, 3 in joint viewing). To enable fair statistical comparisons, we equalized the
number of participants between groups by selecting 7 recordings, which was the number of fully synchronized



Individual Joint 1 Joint 2 Scrambled
AN AN

p > 0.01, uncorrected
" mm Present study
Joint —— Dmochowski et. al

Il ndividual ||
[ Joint 1
[1Joint2 ||
Il Scrambled

p =0.0574

3
Time (min.) Movies

(c) (d)

Figure 1: Joint recording of neural responses to a naturalistic stimulus in a classroom setting. (a) Experimental
setup for joint viewings. Subjects seen from the back before viewing the films. All subjects were placed on a line
to induce a cinema-like experiences. (b) The scalp projections of the first three components obtained from the
correlated component analysis of each of the four subject groups, watching Bang! You’re Dead the first time. Four
distinct groups of subjects watched videos in different scenarios: individually on a tablet computer (Individual),
individually with order of scenes scrambled in time (Scrambled), jointly in a classroom as in (a) (Joint 1 and Joint
2). For each pattern, the polarity was normalized so the value at Cz is positive. (c) Comparison between the
ISC obtained by |Dmochowski et al.|(2012)) and the present study. The ISCs are calculated from the first viewing
of Bang! You’re Dead. The grey area signifies correlation corresponding to p > 0.01 in the permutation statistics.
(d) Mean IVC calculated for the strongest correlated component averaged in time. A block permutation test
(block size B = 25 s) has been employed to estimate statistical significant differences between viewing conditions.
Note that the Scrambled group did not watch the baseline movie.

recordings present in all groups.

Average luminance difference (ALD): Video clips were converted to grey scale (0-255) by averaging
over the three colour channels. We then calculated the squared difference in pixel intensity from one frame
to the next and took the average across pixels. These signals were downsampled to 1 Hz by selecting the
maximum ALD for each 1 s interval (see figure S1 in supplementary materials for an comparison between
frame-to-frame and smoothed difference). These values were then smoothed in time by convolving with a
Gaussian kernel with a variance of 2.5 s2. This down sampling and smoothing intends to match the temporal
resolution of the ALD to that of the time-resolved ISC computation (5 s sliding window with 1 s intervals).

Portable EEG — Smartphone brain scanner: Research grade EEG equipment is costly, time-
consuming to set up, and immobile. However, recently consumer grade EEG equipment has appeared at
reduced price and increased comfort. Here we use the modified 14 channel system, 'Emocap’, based on the
EEG Emotiv EPOC headset. For details and validation, see (Stopczynski et al.l |2014. The present version
was implemented on Asus Nexus 7 tablets. An electrical trigger and associated sound was used to synchronize
EEG and video signals in the individual viewing condition, while a split audio signal (simultaneously feeding
into microphone and EEG amplifiers) was used to synchronize the nine subjects EEG recordings and the video
in the joint viewing condition. The resulting timing uncertainty was measured to be less than 16 ms. The




recorded EEG was bandpass filtered using a linear phase windowed sinc FIR filter between 0.5 and 45 Hz and
shifted to adjust for group delay. Eye artefacts were reduced with a conservative pre-processing procedure
using independent component analysis (ICA), removing up to 3 of the 14 available components (Corrmap
plug-in for EEGLAB (Delorme and Makeig), 2004; |[Viola et al., [2009))).

Correlated component analysis to measure ISC and IVC: Correlated components analysis (Cor-
rCA, described below) was used to extract maximally correlated time series with shared spatial projection
across repeated views within the same subject (inter-viewing correlation, IVC), or between subjects (inter-
subject correlation, ISC). To investigate the temporal development of ISCs and IVCs, they were calculated
in 5 s windows with 80 % overlap, resulting in a 1-second resolution. In order to evaluate the statistical
relevance of the correlations, we employed a simple permutation test (P = 5000 permutations)(Dmochowski
et al. [2012). When testing for differences in average IVC between conditions, a block permutation test (block
size B = 25 s, P = 5000 permutations) was used in order to account for temporal dependencies.

CorrCA was developed by [Dmochowski et al| (2012]), as a constrained version of Canonical Correlation
Analysis (CCA). Given two multivariate spatio-temporal time series, {X;, Xz} € RP*N with D being the
number of measured features (EEG channels) in the two views and N the number of time samples, CCA
estimates weights, {wy, wa}, which maximize the correlation between the components, y; = X]w; and y, =
XJws. The weights are calculated using two eigenvalue equations, with the constraint that the components
within each view are uncorrelated (Hardoon et al., |2004). CorrCA is relevant for the case where the views are
homogeneous, e.g., using the same EEG channel positions, and imposes the additional constraint of shared
weights w = w; = wy. This assumption can potentially increase sensitivity involving fewer parameters. In
CorrCA the weights are thus estimated through a single eigenvalue problem;

(Ri1 + Raz) ' (Ri2 + Rat) w = pw. (1)

where, R;; = %XiXJT-, is the sample covariance matrix (Dmochowski et al., 2012)). To illustrate the spatial
distribution of the underlying physiological activity, the forward models, A = RW(WTRW)~!, are used
(Parra et al.l |2005]).

Robustness to inter-subject variations in the spatial brain structure is a basic question when applying
CorrCA to classroom data. In particular CorrCA assuming that subjects’ spatial networks are identical
could be challenged by inter-individual differences, however, it turns out to be surprisingly robust to such
variability. To demonstrate this, we briefly analyse a 'worst case’ scenario in which the true mixing weights
form orthogonal vectors. The observations are assumed to consist of a single true signal, z, mixed into D
dimensions with additive Gaussian noise; X; = a;z2T + € , Xo = axzT + € . Given a large sample, the
covariance matrices are given as Ry; = P-aja] + o’I, Riy=P- ajal , where P is the variance of z and o2
signifies the noise variance. For simplicity the weight vectors are assumed to be unit length. The two matrices
in Eq. can then be written as

1 all 202\ " al
(Ri1 +Rap) ™' = P <[a1 ay) { ﬂ * I) i Riz+Rop = P-lag ag { 3} ’ (2)
ay a

using block matrix notation. With aJa; = 0, ||a;||?> = ||az||? = 1 and the Woodbury identity, the product of
the two matrices in Eq. can be expressed as

(Ri1 + Raz) ™' (Riz + Rot) = ﬁ(alag + azaf) 3)
An eigenvector of matrix takes the form aa; + fag, with a = £ and i# as eigenvalues. Thus, even
if the weights of the two views are orthogonal, CorrCA still identifies the relevant time series using a weighted
sum of the two true weights. Given the joint activation times series, subject-specific forward models (scalp
maps) can be inferred by linear regression of the individual observations against the common activation time
series, so-called inverse correlation.

Results

To monitor attentional engagement we used video stimuli as they provide a balance between realism
and reproducibility (Hasson et al., [2004). We recorded EEG activity using the Smartphone brain



r=071
p <0.0002

3
Time (min.)

Figure 2: The ISC of Correlated Component 1 is temporally correlated with luminance differences of the stimulus,
consistent with the view that ISC is driven by attentional modulation of visual evoked responses. Data computed from
the neural responses to Bang You’re Dead.

scanner while subjects watched short video clips of approximately 6 minute duration, either individu-
ally or in a group setting (Figure . Three video clips were presented in random order and repeated
twice. To measure reliability of EEG responses, we then computed inter-subject correlation (ISC)
and inter-viewing correlation (IVC) using established methods (see Methods). For both the joint and
individual recording scenarios the fluctuations of ISC closely reproduce results obtained previously
in a laboratory setting for one of the clips (Figure [Lc|and Table . This clip is a suspenseful excerpt
from a short film directed by Alfred Hitchcock (Bang! You’re Dead, 1961). It was selected because it
is known to effectively synchronize brain responses across viewers (Hasson et al., 2008; [Dmochowski
et al., 2012).

ISCvl ISCv2 1IVC
Individual 0.64**  0.33** 0.49**
Joint group 1 0.51**  0.15%*%  (.44**
Joint group 2 0.61**  0.28%*% (.54**

Table 1: Correlation coefficients between the results obtained in a laboratory setting (Dmochowski
et al.| [2012) and those obtained in the present study (groups Individual, Joint 1 and Joint 2).
Inter-subject correlation (ISC) measures similarity of responses between subjects for first and second
viewings (v1,v2) and the inter-viewing correlation (IVC) measures similarity within-subject between
the two views. Values are calculated using the first correlated component recorded while watching
Bang! You’re dead. **: p < 0.01, *: p < 0.05.

To determine if the portable equipment, which uses only 14 electrodes, can detect varying lev-
els of engagement, a second group of subjects watched the same video clips individually, but now
with scenes scrambled in time. This manipulation aims to emulate reduced viewer engagement and
is known to reduce reliability of neural responses (low IVC) while maintaining identical low-level
stimulus features (Dmochowski et al., 2012). Despite using consumer-grade EEG we find that IVC
is significantly above chance for a large fraction of the original engaging clip, but this drops dra-
matically when the scenes are scrambled in time (mean IVC, Figure p < 0.01, for Bang! You’re
Dead). Also, as expected, the baseline video shows no or little synchronisation, which is further
evidence that the IVC is affected by viewer engagement.

For experiments conducted in natural settings as in the present case, it is important to assess
across-session reproducibility. To test this, we recorded a second group of subjects in a classroom
setting, now watching the material together (Joint 1 and 2). These two groups obtained mean IVCs
comparable to the individual recordings (Figure Bang! You’re Dead: p > 0.49, Sophie’s Choice:
p > 0.26), and also showed reproducibility between the groups of simultaneous recordings (Figure
Bang! You’re Dead: p > 0.49, Sophie’s Choice: p > 0.08).

A further test of the stability of the technique is provided by the spatial patterns of the neural
activity that drives these reproducible responses. The technique we used to calculate ISC and IVC
measures correlation, not of individual EEG electrodes, but of components of the EEG, i.e. linear
combinations of electrodes as used in other component extraction techniques, such as independent



Bang! You're Dead Sophie's Choice

5 5 i~
X X
al 5 o 4 slope: 0.93
X X
@
B3t 33
2 0
£ g
2 5 2
c c
~ 0090 =
Q 8 & % (@) 1
D | o 3 )
>§< X OO X X * X
X XXX X o 0
o Narrative |
x Scrambled 2
. . ! ! R
1 2 3 4 5 1 2 3 4 5

ALD (normalised) ALD (normalised)

Figure 3: Dependence of ISC on ALD for different engagement conditions. Each point indicates instantaneous ISC
and ALD calculated from the visual stimulus. It is evident that moments with higher luminance fluctuations (hight
ALD) result in higher correlation of brain activity across subjects (high ISC). Slope indicates the strength of ISC for a
given ALD value. There is a significant drop in the slope (p < 0.01: block permutation test with block size B = 25sec),
thus the original narrative (blue) elicits higher ISC than the less engaging scrambled version of the video (red).

components or common spatial patterns (Parra and Sajda, 2003} Koles et al., [1990). The strongest
two correlated components show a stable pattern of activity across the different groups and recording
scenarios (Figure [1b)).

It may appear surprising that there exists a significant correlation between the raw FEG signals
of various students in the classroom. However, it is well-known that eye scan patterns in an film
audience follow a specific pattern after a scene change, activating the dorsal pathway
. Likewise, it is also known that stimulus in the form of flashing images elicits visual evoked
responses (VEP), which are modulated in amplitude by the luminance (Armington, 1968). When
recorded with EEG, the spatial distribution of the early VEP at 100ms (P100) is similar to the
scalp maps of the first correlated component (C1 in figure (Johannes et al., |1995; Sandmann|
. To estimate how much of the response is driven by such a basic mechanism, we
analysed the relation between ISC and a measure of frame-to-frame luminance fluctuations (average
luminance difference, ALD; see methods). Note that to avoid synchronised eye artefacts and ensure
that only signals of neural origin contributed to the measured correlations, we removed independent
components related to eye artefacts from the EEG (see methods).

ISCvl ISCv2 IVC
Bang You're Dead 0.71**  0.61**  0.56**
Sophie’s Choice 0.50%*  0.24**  0.23**
Bang You're Dead (Scr) 0.54*%  0.45**  0.35%*
Sophie’s Choice (Scr) 0.42**  0.01  -0.22%*

Table 2: Correlation coefficients between the ALD and the ISC for the two viewings (v1,v2) as well
as the IVC for the first correlated component C1. The correlation is presented for Bang You’re dead
and Sophie’s Choice for the Individual and Scrambled (Scr) groups. **: p < 0.01, *: p < 0.05.

Figure [2| and Table [2| show that there is a significant correlation between the ISC and the ALD
for both Bang! You’re Dead and Sophie’s Choice. This suggests that this portion of the correlated
activity (C1) may indeed be driven by low-level visual evoked responses. However, the level of
attention modulates the amplitude of the ISC time course, in that the ISC elicited by the scrambled
stimulus elicits a much lower (but still presumably driven by attention) ISC. Modulation of VEPs



by attention has been previously documented (Johannes et al. [1995)). We quantify the dependence
on attention by comparing the sensitivity (slope) of ISC to ALD in both the normal and scrambled
conditions (Figure [3). For both movies we found significant reductions of the ISC/ALD slope in the
scrambled version (p < 0.01; block permutation test, with block size B = 25 s).

Fig. [2] indicates that the interval in Bang! You’re dead with the highest and most sustained
ISC (around 1:20 to 1:50) coincides with the interval of the clip in which scene changes are most
numerous. Note that fast-paced cutting is a known cinematographic tool used by Hitchcock to induce
suspense and thereby increase the attention of the viewer (Bordwell, 2002]).

Conclusion

We have demonstrated that student engagement in media stimuli may be measured using EEG in
a classroom setting. For educational technology cost and robustness are a key features, hence, we
aimed at establishing a realistic scenario based on low-cost consumer grade equipment, the Smart-
phone brain scanner, focusing on several potential sources that could degrade robustness. Mathe-
matically, we showed that the our detection scheme, CorrCA, is robust to inter-subject variability in
spatial configurations of brain networks. We provided evidence that salient aspects of the attentional
modulation earlier detected with laboratory grade equipment can be reproduced in a realistic setting.
We recorded fully-synchronized EEG with nine subjects in a real classroom and found that the level
of neural response reliability matched prior laboratory results and predicted viewer engagement. We
also found that luminance fluctuations drive a significant portion of this correlation, and that the
strong dependence of inter-subject correlation on narrative coherence of the stimulus is at least partly
due attentional modulation of visual evoked responses. The evidence presented that such a basic
mechanism is at play further add to the robustness of the approach.
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