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Abstract

The presence of asymmetry in the misclassification costtaes prevalences is a common occur-
rence in the pattern classification domain. While much isteh@s been devoted to the study of
cost-sensitive learninggchniques, the relationship between cost-sensitivailegiand the specifi-
cation of the model set in a parametric estimation framewenkains somewhat unclear. To that
end, we differentiate between the case of the model inctuttie true posterior, and that in which
the model is misspecified. In the former case, it is shownttirasholding the maximum likelihood
(ML) estimate is an asymptotically optimal solution to tigkmminimization problem. On the other
hand, under model misspecification, it is demonstratedttinasholded ML is suboptimal and that
the risk-minimizing solution varies with the misclassifica cost ratio. Moreover, we analytically
show that the negative weighted log likelihood (Elkan, 20@la tight, convex upper bound of
the empirical loss. Coupled with empirical results on salvezal-world data sets, we argue that
weighted ML is the preferred cost-sensitive technique.

Keywords: empirical risk minimization, loss function, cost-senaitiearning, imbalanced data
sets

1. Introduction

Pattern classifiers make decisions; when those decisions are wrong, ia insurred. Thus, the
ultimate goal of a classifier is to minimize the loss. When put into probabilistic termsnaitiee-
matical expectation of the loss is called tligk, and is related to the classifier's error rates. In the
case of a binary classification this can be written as (Duda et al., 2001):

risk=p(+1)c(+1)p(errof+1)+ p(—1)c(—1)p(errof — 1), (@D)

wherec(+1) andc(—1) denote the costs of a false negative and false positive, respecpyely)
and p(—1) are the prior probabilities for classgs= +1 andy = —1, p(erro+1) is the false
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negative rate, ang(errof — 1) is the false positive rate. Notice that the false positive and negative
rates are the only terms which depend on the classifier parameters, svhiggaaisclassification
costs and class priors are typically constants of the classification protdésn (ve consider the
case of example-dependent costs). The class priors are coupled evithsts of misclassification

in the expression for expected loss. Thus, the risk minimization problem isielgigefined by

the ratio%; that is, even though the priors and costs may vary, as long as this rat stay
constant, the optimization problem is unchanged.

The termcost-sensitive learninfElkan, 2001) has been attached to classification environments
in which ¢(+1) # ¢(—1). On the other handalassification with imbalanced data s€¢Bhawla and
Japkowicz, 2004) refers to the case whpfe-1) # p(—1). The presence of at least one of these
asymmetries has been referred to by some as the “nonstandard” casedLr2002), even though
the situation is rather common in practice. In any case, these two problems maified simply
by stating that the goal of the classification is to minimize the risk, as opposed ¢orkientional
error rate:

error rate= p(+1) p(errof +1)+ p(—1) p(errof —1).

A classifier that is designed to minimize the error rate will generally yield a higlee®d loss
when applied to the cas®#+1) # c(—1), as the error-minimizing classifier will under-emphasize
the more costly class. The problem may be exacerbated if the class poasmbme also skewed,
and in the extreme case, the algorithm yields a trivial classifier which alselgsts the common
class.

Minimizing risk is synonymous with optimally trading off the false negative andefalssitive
rates. The trade-off between the false positive rate and false negaiivis precisely depicted by
receiver operating characteristic (ROC) curves (Provost and é&igwl®97; Fawcett, 2004; Egan,
1975). Thus, ROC curves are well-suited to evaluating the expectedflasslassifier across the
range of misclassification costs. However, “reading off” the expectifform an ROC graph is not
straightforward, and Drummond and Holte (2000) proposed cost sasan explicit visualization
of a classifier’s risk for varying misclassification costs and class prirse the ratic% is
unbounded, the curves instead show the risk as a function girtibability cost functior{pcf):

p(+1)c(+1)
p(+1)c(+1) + p(—1)c(-1)

Cost curves facilitate the quantification of the reduction in loss offereddmstsensitive learning
algorithm.

Several methodologies have been developed in the effort to desigmingkizing classifiers.
The simplest approach is to modify the threshold of an existing, cost-insencléissifier. If the
classifier is based on the log of the ratio of true class posterior probabithieshreshold should
be modified by a value equal to the log of the ratio of misclassification costsa(Budl., 2001).
In practice, the true class-conditional probabilities are unknown. Nesless, shifting the thresh-
old by the corresponding amount has become a common heuristic (Elkaly, 20t al., 2002).
Elkan (2001) proposes handling asymmetric misclassification costs by negraive classifier on
a training set in which the proportion of positive and negative examples idhethto the ratio of
misclassification costs. Alternatively, if an algorithm may apply weights to theitigaexamples,
the negative examples should be weighted by a value corresponding teythenatry in misclas-
sification costs. Maloof (2003) points out that although the problems of imbathdata sets and

pcf=
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varying misclassification costs are separate problems, they may be tackbsg similar ways. He
shows empirically that oversampling the less prevalent class (or unddisgitie more prevalent
class) is a procedure which yields results virtually identical to adjusting ttiside threshold.

Domingos (1999) proposes a technique to relabel the training data in suah that the rela-
beled data set may be trained using a standard (cost-insensitive) tectonidelel a cost-sensitive
classifier. The posteriors for thebeledexamples are estimated via bagging and then used in con-
junction with the Bayesian minimum risk criterion to assign new labels to the supdrdita.
Margineantu (2000) analyzes the approach of Domingos (1999) aygestis ways of improving
the class probability estimates of the training data. Dudik and Phillips (2009¢s=lithe class im-
balance problem by proposing a method which attempts to minimize loss assumingrgtease
class proportions. Masnadi-Shirazi and Vasconcelos (2010)idescrost-sensitive version of the
popular support vector machine.

Some work has been devoted to the case of example-dependent cabtz(®aand Elkan,
2001; Zadrozny et al., 2003). Moreover, some authors have ambfar maximizing benefits
rather than minimizing costs (Elkan, 2001).

In Guerrero-Curieses et al. (2004), the authors examine loss fugatibich are minimized by
the true class posterior probabilities; moreover, it is pointed out that thespmnding optimization
algorithms should focus on training points near the decision boundary.

It is also important to point out that risk minimization is a diverse problem spgmmultiple
research communities; in particular, significant contributions to the probéem leen made in the
econometrics literature. To that end, Elliott and Lieli (2007) examine a pmohlealogous to cost-
sensitive learning, namely the determination of a profit maximizing decisionrsxhg a lender.
It is noted therein that to construct the minimum risk decision, the model deresty mot match
the true density; rather, it is only required that the classifier output frenmtbdel density falls on
the same side of the threshold as the classifier output using the true densigovdr, the authors
use a new loss function, namely an affine transformation of the expected (itdky, and show an
empirical advantage over traditional methods.

While a plethora of cost-sensitive methods has been investigated, it remaleaiuunder what
conditions shifting the threshold of an existing cost-insensitive classifier appropriate solution.
The distinction between the case of the model family including the true posteeimus that of
“misspecification” (the model does not contain the truth), has large implicatiorte resulting
cost-sensitive learning process.

In the former case, shifting the threshold of the maximum likelihood (ML) solusi@m asymp-
totically optimal solution to the risk minimization problem, and in the following we provigeoaf
of this important point. This means that when employing an expressive famighwbntains the
true posterior, the cost-sensitive learning problem becomes one ofydestimation, and the costs
affect only the threshold, not the estimator. This may lead one to use a richl setdeading to
complex classifiers. However, the choice to employ a simple classifier bringg ativantages:
ease of implementation, a lesser number of parameters to estimate, a redkafdvisr-fitting,
and consequently simplified regularization procedures. Coupled with thplerity of real-world
data sets, misspecified models are frequently encountered in practices ¢atk, we demonstrate
that thresholded ML is suboptimal, and that the minimum risk solution varies withatie of
misclassification costs.

The problems with minimizing the true empirical risk, a non-smooth function, aliekwewn:
for zero-one loss, the idea of smoothing out the indicator function appe&iorowitz (1992). In
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this paper, we employ a sigmoidal approximation of the empirical risk to yield elmoinimizer
of the loss under asymmetric misclassification cost values. Rather thanfargte optimality,
this estimator is used as a basis for comparison and to argue for the relative ofieexisting
cost-sensitive techniques. We show analytically that the negative weilgigiéilelihood serves as
an upper bound to the sigmoidal empirical risk. Based on the convexity afahative weighted
log likelihood and forthcoming numerical results, we will argue that weightéddvwyenerally the
preferred technique.

2. Classification Model

In the following, we adopt a probabilistic model for the classification taskume that the true
posterior probabilityp(y|x) of classy € {—1,+1} given received feature vectarc RP is known.

Let c(y,x) denote the cost of a misclassification when the true claskisfeaturex, minus the cost

of a correct prediction. Note that in generals feature-dependent, although in many applications,
c(y,x) = c(y). If there is also no cost for a correct decision, tlogy) is simply the cost of a false
positive ff = —1) or false negativey(= +1). The optimal Bayesian decision rule is to pregiet +1

if (Duda et al., 2001):

PLHLX)

o(— 1) Co(X),
wherecy(X) = gglm > 0. The optimal decision rule may be written as:

y(x) = sgn[f(x) —Inco(x)], )
wherey(x) is the predicted class given feature veckorsgn is the signum function s@ =
{ _11 iz 8 , andf(x) is the discriminant function:

+1|x
f(x)=In Sg_llxi.

It should be noted that the argument of the signum function may be written anlivg) due to the
nonnegativity of the ratio of posteriors and the optimal threshkg(d).

In practice, we do not have access to the true class posteriors, beit estimate their values
from available training data. The estimate is denoteg(yyx;8), whered € © is a vector parame-
terizing themodelposterior, an® is termed the model set. If the true posterior is in the model set,

denote the true value 6fby 6, such thap(y|x) = p(y|x; 6*). The model discriminant is written as

f(x,0)=1In EE%K%, and the classifier takes the form:

¥(x,8) = sgn(f (x,8) —Inco(x)]. 3)

This paper is concerned with methods of estima€éirig minimize risk, and their relation to the
specification of the model set. In order to treat these estimation methodsiefig dutline the risk
minimization framework which allows for the subsequent analysis of the \@dost-sensitive loss
functions.
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3. Risk Minimization for Cost-Sensitive Learning

Risk minimization is concerned with choosing a function from a{$€k,0),06 € ®} to minimize
the resultingisk functional

R(®) = [ [Lyx.8)plx.y)dxdy

wherelL (y, x,8) quantifies the loss incurred by the classifiéx,D) in response to labeled data y).
Note that the losk varies with the featurg. To ease notation throughout the rest of the paper, the
dependence of 6nx and8 is implied.

The problems of regression, density estimation, and pattern recognitionlieyfarmulated
within the context of risk minimization, simply by altering the loss functigras outlined in Vap-
nik (1998, 1999). In the case of error-minimizing pattern recognition, tgsical zero-one loss
function is given by:

L(y,%,0)=1(y#Y),

wherel (®) is the indicator function which equals one wheris true and zero otherwise.
Since we do not have access to the true densiyy), the empirical risk minimization (ERM)
approach substitutes the empirical density:

N

Pemp) = 51 =0) 1 (y=Yo).

where D = (xn,yn)wz1 is a set ofN labeled observations which are independent and identically
distributed samples drawn from the true joint dengity,y), leading to the following expression
for theempirical risk

N

Remp(8) = = 3 Ly Xn.). @

n=1

In order to design a cost-sensitive classifier, a loss function modelingytmenaetry in misclassifi-
cation costs is required. Several alternatives exist. In the followingestibas, we describe these
loss functions.

3.1 Thresholded Maximum Likelihood

The traditional (cost-insensitive) ML loss function is given by Vapnikd@p

L(y,X,G) = _lnp(yX;e)a

leading to the following expression for the empirical risk:
p( ) N 4 (yn‘xn’ ) ( )
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The minimizer of (5) is the well-known ML estimate (Duda et al., 2001):

N
By, = argmaxn Xn: 0
ML geee n|:|1p(yn| n; 0)

N
1
= argmaxn —_—
%60 nD11+p(anIXn:9)

= arg maxz In

-
1+e Yn Xnye) ’

where the second step follows from Bayes'’ rule. If the modeBsebntains the true parametgf,
it follows that in the asymptotic limit, we have lin, o By = 6" (Kay, 1993). From (2) and (3), if
we have knowledge d*, then a threshold shift of Ity (x) yields the optimal classifier. Assuming
continuity of the log likelihood (inB), we have that Iim%my(x,éML) = y(x,0%), and thus the
thresholded ML estimate yields the minimum risk decision rule for all cost ratiogze Ghe ML
estimate is available, the cost-sensitive classifier for any cost ratio mayrheddy appropriately
adjusting the threshold. There is no need to retrain the classifier if theata@sthanges. In the
case of a generalized linear model faly|x,0), it may easily be shown (McCullagh and Nelder,
1989; Parra et al., 2005) that the risk function is convex, and an itehatieweighted least squares
(IRLS) algorithm locates the optimal linear classifier often within a few iterations
Unfortunately, in many real-world classification problems, the model se¢x@ample, the set of
all hyperplanes) does not contain the true posterior. Notice, for exathpleeven in the simple case
of Gaussian data, the linear discriminant is only optimal in the case of equali@oce matrices;
nevertheless, linear classifiers are heavily used. (For a comprebdreatment of misspecified
models in ML, refer to White, 1982.) In such cases, the classifier in the nsetlelhich minimizes
risk will vary with the pcf. As a result, a shift in threshold of the ML solution wiileld a sub-
optimal classifier.

3.2 Example: Minimum Risk Hyperplane for Gaussian Data

To illustrate this point, we consider the instructive case of Gaussian dengitiesnequal covari-
ances and a linear classifier function. The purpose of this exerciséd i® @ogue for a simple
Gaussian model or a linear classifier but rather to demonstrate in an arilyttiaatable case
the problem that arises with thresholded ML when the model is misspecifies.asisumed that
c(y;x) = c(y).
Consider a linear classifier of the forfiix; 8) = 8" x—b, and assume Gaussian class-conditional
densities:
_ 1 ew S eew) _
p(x]y) (2n)D/2\zyyl/ze ,ye{—1,4+1}.

Note that by the normality ofly, 6" x ~ A (6" u,, 8" %,8). Thus, we have:
p(errofy) = ply(8"x—b) <0]

1 b—8Tp
= 1+y-erf ()
2
{ \/ 2078
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Substituting (6) into (1), the expression for the expected loss takes the for

b—0Tu, c(—1)p(-1) b—6Tw
1+erf<\/m>] + > erfc(\/m> . @)

The optimal hyperplane is the one which minimizes the risk: argmiR(6, b).
Below, we illustrate an example where the parameters of the data are given by

R(6.b) — c(+1)p(+1)

1 0 05 0
w=[050]", w=[005]" 5 = [0 0.5},2_:[ - 1]‘

In this case of unequal covariance, the optimal ML classification functinntiinear but instead a
quadric (Duda et al., 2001, Chapter 2).

Figure 1(a) displays the minimum risk quadrics for various values of theybere it is assumed
thatp(4+1) = p(—1). The quadrics are related to each other via a threshold shift. On the attnr h
Figure 1(b) depicts the minimum risk planes for the same data, which were tedripuminimizing
(7) using numerical optimization techniques. It is clear that the direction afpkienal plane is a
function of the pcf, and a threshold shift of the minimum error plane is natpimal solution to
the risk minimization problem. Figure 1 (c) displays the threshold-shifted MLtisalsi for various
values of the pcf. The suboptimality of the ML approach is readily appdmgnbntrasting Figure
1(b) with Figure 1(c). Notice that at the extremes of the pcf, the optimal plareorthogonal to
each other. Meanwhile, the ML plane has unit slope for all pcf. The nbkained by applying the
ML and minimum risk planes to the given data are shown in Figure 1(d). Ingbesfiwe normalize
the raw risk of (1) by the “trivial risk”, which is defined as the risk acleid\by the scheme:

Yirivial = SgN[P(+1)c(+1) — p(—=1)c(—1)].

We call this the “trivial risk” because the decision rule is feature-inddpahand is strictly a func-
tion of the class priors and misclassification costs. A normalized risk less timalichtes that the
classification scheme yields a “savings” over the a priori decision rule nbhmalization allows us
to quantify the “percentage of savings” achieved by employing a “smaci%iba rule.

The curves were generated by averaging over 1000 ensembleg @dwr ensemble consisted
of N = 1000 training samples. The ML classifier was trained on each ensembleearesthting
risk computed by substituting the solution into (7). The risk margin between teshibid-shifted
ML solution and that of the minimum risk plane is what is “available” for costs@am learning
algorithms to improve upon. These methods attempt to learn, for each pcf, tieuminisk plane
shown in Figure 1(b), to achieve the dashed cost curve in Figure 1(d).

The difference between the threshold-shifted ML and cost-sensitiasligens may be under-
stood in terms of ROC analysis—Figure 1 (e) depicts the ROC curves forrgmhtiided ML and
minimum risk classifiers. In the ML method, the ROC curve is generated bypémgethe thresh-
old of the base classifier across the real line and computing the corrésganrdor rates. In the
cost-sensitive paradigm, each point on the ROC curve corresponddigtirect classifier which is
computed by minimizing (7) for a specific ratio of misclassification costs, resuftinglues for the
true and false positive rates. Note that one may also prodéemity of ROC curves by sweeping
the threshold of each of these distinct cost-sensitive classifiers, althbiggis not shown in the
figure.
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Figure 1: Minimum risk classification of Gaussian data with unequal covegiaratrices.

3.3 Relabeled Examples

One heuristic to cost-sensitive classification is to modify the training labels tevach balance in
class prevalence. In terms of an ERM loss function, this may be written as:

L (y,x,6) = —Inp[g(x)[x; 6],

where the functiomg(x) : RP — {—1, +1}, produces a new label for each training sample according
to some criterion. Domingos (1999) proposes MetaCost, which reasslygls kccording to the
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Bayesian minimum risk criterion:

g(x) =arg max c(y)p(yx), (8)
ye{-1+1}
where p(y|x) is an estimate of the class posterior probability which is obtained using bagging
(Breiman, 1996). It is typically the examples near the boundary whicheatabeled. The em-
pirical risk follows as:

o1o(8) =~ 3 I plg0xw)xn;6].

As the re-labeling of (8) varies with the ratio of misclassification costs, thaltieg cost-
sensitive classifier is a function of the pcf and thus has the ability to yield the mimirigk es-
timator. The success of the method hinges on the estimation of the posteriabilit@s; in the
best case scenario, the re-labeling results in the cost-sensitive p@apaoaching the minimum
risk boundary. In contrast to the forthcoming methods, MetaCost ddesweight examples, and
thus the risk function will not dominated by the examples of a rare but costg.clEhe technique
may be used as a cost-sensitive pre-processing to any classificatiomgtehand not just ML es-
timation of the posterior. In the case of ML, we maximize the log-likelihood but wi¢hattered
labels.

3.4 Weighted Likelihood

A standard approach for developing cost-sensitive classifiers is tchivikig training examples
according to the “costliness” of misclassifying that example. This proeethay be viewed in
terms of an ERM loss function (Elkan, 2001; Zadrozny et al., 2003):

L (y,X, e) = _C(ya X) In p(y|X, e) ’

such that the corresponding empirical risk takes the form:
1
emp(8) = =17 > C(¥n:Xn) IN P(¥n[X0; ). 9)
n

Weighting the log likelihood has previously been studied as a tool to handleeauifisption (Shi-
modaira, 2000). Note that such weighting of examples is equivalent to maglitygnproportion of
examples in the training set according to the weightir{gsx). If these weightings change, so does
the cost function, and thus the classifier needs to be retrained. In peirttijs technique allows the
classification to choose the model@which minimizes risk for the specified cost matrix. More-
over, example-weighting may easily be incorporated into the IRLS algorithidjiyiean iterative
reweightedveightedeast-squares scheme (McCullagh and Nelder, 1989) which minimizes (9)—in
the appendix, we provide a MATLAB implementation.

Notice that if the misclassification costs are highly asymmetric, the more “costhrhpbes
will be heavily emphasized in the empirical risk function. Furthermore, if taezeonly a few such
examples, the classifier is at an increased risk of overfitting, sinoeffingtivenumber of examples
is much less thamN. This issue plagues any cost-sensitive method which weights the examples
based on cost.
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3.5 Sigmoidal Empirical Risk

In order to relate the risk of (1) with the empirical risk (4), the appropriags fanction is found to
be:

L(Y;x,8) =c(y, X)L (J#Y).

Strict equivalence is achieved in the simplifying case(@fx) = c(y)1 (Y # y) assuming that there
is no cost for a correct decision. Generally, the empirical risk follows as

Reng®) = const=- 5 c(yx0) 1 (51 # 30
= const+ % ;c(yn, Xn) U[—=Ynf (Xn,0)] (10)

where the constant is a summation across the costs of a correct decthigmgs the step function:
u(x) = 1 x>0
0 x<0
the direct loss of (10) is of great importance.
Elliott and Lieli (2007) propose to optimize a function closely related to (10hir@nometric
context; employing the notation of this paper, the objective function maximizégdliogt and Lieli
(2007) is written as:

. Since our goal is to minimize (1), the optimization of the empirical risk under

N
Rel(6) = Zlync(ymxn)Sgn[f (Xn,8) —INCo(Xn)], (11)

and the authors propose simulated annealing to perform the optimization.

Note that both objective functions (10) and (11) are not differentialdetd the non-smoothness
of uand sgn at zero, respectively. In the case of (10), we may approxihestep function with a
sigmoid :

1

u(x) ~ =1

(12)

Substituting (12) into (10), we obtain the following expression for the apprate empirical risk:

~

1
Rempl(®) = ; C(yn,xn>m-

The classifie® which minimizes the empirical risk follows as:

6 =arg rginli’emp(e). (13)

The advantage of this approach is that it closely approximates (up to the abilitg sigmoid
to approximate a step) the true empirical risk. On the other hand, the riskduns non-convex,
complicating the minimization of (13).
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3.6 Relating Sigmoidal Risk to Weighted ML

The need to minimize non-convex functions arises often in practice. A sthtra in optimizing a
non-convex function is to optimize a convex upper bound of the origimeltfan. In this subsection,
we show that the negative weighted log likelihood, a convex function,geswa tight upper bound
of the sigmoidal empirical risk.

To see this, note the inequality:

z<—-In(1-2), z< 1 (14)

Substitutingz = ey—fl(q) into (14) results in:
1+ nT|Xn,

1 1
—In

- < I —
1+eynf(xn,9) - 1+e—ynf(xn,e)
Combining these inequalities over the training examples and assuming striatipositine weights
¢(Yn, Xn), We obtain:

1
C(Yn, Xn) ————=~ < — Y (Y, Xn) IN ————————.
250X i) = T 2 SO )

As a result,
Remp(8) < Remp(6).

This means that minimizing the weighted negative log-likelihood (9) minimizes anr bppad
on the empirical risk. As will be shown numerically with upcoming examples, thimbas fairly
tight (c.f., Figures 2 and 3). Since the negative weighted log-likelihoodrigeq to circumvent the
non-convexity of the sigmoidal empirical risk, one option is to employ the weigiikelihood loss
function.

4. Experimental Evaluation

To assess the performance of the various cost-sensitive appr¢antéts dependence &), and to
support the upper bound relationship of weighted ML to sigmoidal risk,anelacted an empirical
evaluation of the various cost-sensitive learning approaches oreseega sets. We first consider
the case of example-independent and synthetic (i.e., exogenous to tinesg¢aosts. Later, we
examine a data set where costs are endogenous and depend on ttes fadiemployed a linear
model set of the fornf (x,0) = 8T x — b. For all data sets, five-fold cross-validation was employed,
and we plot the mean loss over tNeexamples (each example is used once for validation) along
with standard errors of the mean.

The prevalence of the positive class is data-set dependent. The gehviad from 0L to 09 in
increments of A.. The relationship between the misclassification cost ratio and the pcf islgyve

c(-1) _ p(+1) (1—pcf)

c(+1) p(-1) pcf

Thus, a pcf of (b corresponds to the case where the ratio of misclassification costs iseigvers
related to the ratio of class priors [i.e(—1)p(—1) = ¢(+1) p(+1)].
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The generalization ability of all algorithms benefited frésregularization. Thus, the problem
of cost-sensitive learning becomes one of penalized ERM:

0= argmyinf Rary(®) + 5 161 . (15)

Where computationally feasible, the valuehaofras determined using a nested cross-validation loop
which tunes\ on the training set; the tuned value is then fed up to the outer cross-validation lo
which evaluates performance on the test set.

The implementation of all cost-sensitive learning methods requires solvingptireization
problem (15). For the 3 likelihood based methods, the Newton-Raphddh @éRjorithm (McCul-
lagh and Nelder, 1989) was employed to solve the optimization. In order te godvminimum
risk optimization of (13), the Broyden-Fletcher-Goldfarb-Shanno (BFGuasi-Newton method
(Fletcher, 2000) was employed in conjunction with multiple random restartan@dom starting
vector is chosen, the BFGS algorithm is run, and the training risk evaludteid. process is re-
peated 100 times, and the final solution is selected as the classifier whichtiieldsvest training
risk among the runs.

4.1 Gaussian Data

Before delving into real-world data sets, we evaluated the various cositige approaches on the
Gaussian data described in Section 3. This example is instructive as wa blmged-form expres-
sion for the minimum attainable value of risk, and thus can evaluate the cemeergroperties with
an increased sample size. Figure 2 depicts the cost duimegarious training sizebl. At N = 10,
there is a substantial loss margin between the minimum risk plane and that whithidseal by
the thresholded ML technique. However, it is clear that the cost-senttitmiques are not able
to provide reliable estimates of the minimum risk plane direction with such limited dataheAs
size of the training set increases, the sigmoidal risk estimator convergesrtorttmum risk plane.
Notice, however, that with such large sample sizes, the thresholded Miidgeehis relatively adept
at yielding risk values comparable to the true minimum. The reason for this is thak#dmples
which are misclassified by thresholded ML and classified correctly by thethiee techniques are
mostly the low-cost examples (compare Fig. 1(b) with Fig. 1(c), for examplisp shown in all
plots is the Bayes risk, which is the risk attained by the minimum risk quadric.

4.2 UCI Data

Next, we evaluate the classifiers on several real-world data sets obfeomedhe UCI database
(Asuncion and Newman, 2007) as well as our previous work on theifitasi®n of electroen-
cephalographic (EEG) data in a real-time detection task (Parra et al.,20@8)je 1 summarizes
the parameters used in the evaluation of these data sets.

From Figs. 3 (a) and (b), it is once again apparent that given a medlest ofN, the benefits
provided by cost-sensitive learners over the thresholded ML apparamot substantial. However,
in Figs. 3 (c) and (d), one observes a tangible loss reduction of the sightisikl estimator over

1. In addition to the ensemble-averaged risk, we also report standard ef the mean, which follow as the sample
standard deviation of the ensemble-averaged mean, divided by theeggot of the number of ensembles.

2. Since only one “ensemble” is available in the experiments with real dadreat the cost (at test time) of each
example as an iid realization of the risk and report standard errors of¢he across examples.
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Figure 2: Cost curves for Gaussian data with varying training set diz€d), the thresholded ML
and MetaCost curves are nearly equivalent.

| Dataset [N(+) [N(-) [D[ A | p(+1) |
Haberman| 81 225 | 3 | optimized| 0.26
Transfusion| 178 570 | 4 | optimized| 0.24
Magic 6688 | 12332 10 | fixed (0.2)| 0.35
Adult 7841 | 24720| 14 | fixed (0.2)| 0.24
EEG 830 | 40608| 15| fixed (2) | 0.02

Table 1: Data set and regularization paramet&&+) andN(—) refer to the number of positive
and negative examples, respectively.

thresholded ML and MetaCost, whose curves overlap. Lastly, Fig. @8gmponstrates the near-
optimality of weighted ML and its close approximation of the sigmoidal risk minimizingtsmiu
Note that for this heavily skewed data set, while the total number of examd\es-i¢1438, only
830 of these are positive exemplars. Note also that a skew in class pev#dads to asymmetry
in the resulting cost curves.
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Figure 3: Cost curves (with standard errors of the means) for varealglata sets with synthetic
costs.

4.3 German Banking Data

Finally, we evaluated the risk minimizing classifiers on a publicly available dateofletted by
a German bank: http://www.stat.uni-muenchen.de/service/datenarchiv/krediitttml|. The data
set details the credit history and biographical informatioilef 1000 past loan applicants, as well
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Figure 4: NPV per applicant. means and standard errors. Solid horizimeaindicate statistical
significance at the = 0.01 level.

as whether the loan was repaid. This data set has been used previoesiyuaie a novel profit-
maximizing decision rule in the econometrics literature (Lieli and White, 2010).

Upon receiving a loan request, the bank decides either to grant thetlaaredain interest rate,
or rather to invest the loan amount in a risk-free government bond. lragpBcation, it is easier
to work with benefits rather than costs; as such, the net present vahyd (Measured in Deutsche
Marks (DM) of extending the loan must be compared with the NPV of rejectiacafiplication,
which is zero as outlined in Lieli and White (2010). The NPV of extending tha ldepends on
whether the loan is repaid, and thus the optimal decision rule takes into at¢beiprobability of
repayment as well as the potential profit to be made on the loan. Thus, thef #ie evaluation
is to predict, from an applicant’s credit history and biographical infornmatile likelihood of the
applicant repaying the loan which he/she is seeking.

In the framework described in the earlier sections, we ledyex) = y- 11(y,X), wherert(y,X)
denotes the NPV associated with predictyrng +1 when the truth iy (repaymenty = +1, default:

y = —1). Please refer to Lieli and White (2010) for the precise mathematical nesaijp between

the NPV 1t and the individual features ir. In the evaluation, we used tHe = 5 dimensional
feature set chosen by Lieli and White (2010), as well as their proxiethéointerest and risk-
free government rates. Note that the “costs” are both example-degtesuuld endogenous to the
problem. We conducted a leave-one-out cross-validation of the tHdeshbIL, weighted ML, and
sigmoidal risk estimators on thié= 1000 example data set (MetaCost is not applicable to problems
with example-dependent costs).

Figure 4 displays the mean NPV per applicant, along with standard errarsav€age, the
means obtained by the thresholded ML, weighted ML, and sigmoidal risk estsreti® DM 3.0
, DM 19.8 , and DM 21.2 . The standard errors are given by DM 18.1 , @M ,land DM 11.9,
respectively (a negative value of NPV indicates an overall loss forldssification scheme). We
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performed pairwise sign-tests of statistical significance to determine ifrpeafice differs signifi-
cantly for the classifiers. A statistically significant improvement in NPV is aeuddyy both WML
and sigmoidal risk estimators over the thresholded ML solutjpr: (0.01). On the other hand,
statistical significance cannot be established between WML and sigmoikiglpris 0.9). This
empirical finding supports the analytical result of negative weighted logHikxed upper bounding
empirical loss.

5. Discussion

It is interesting to point out the process which led to the findings presentbisipaper. Initially,
we were motivated by the observation that with a misspecified model, the dire€tioe minimum
risk hyperplane is a function of the ratio of misclassification costs and the ptaws. Since the
ML approach is inherently to shift the minimum error hyperplane, we saiegihévelop an estima-
tor which, given a ratio of misclassification costs, will find the direction regpuio minimize risk
rather than maximizing likelihood. The expectation was that such an estimattd prowide large
performance gains over the ML approach. This led us to the developmte sigmoidal empiri-
cal risk minimizer. During the algorithm evaluation process, several fisdemgerged. Firstly, the
search for the minimum risk hyperplane is non-trivial: regularization teclasigproved to be nec-
essary, particularly in the case of a limited training set. Moreover, both flsérexand proposed
cost-sensitive learning techniques yield the greatest benefits ovendtlited ML when presented
with large amounts of training data. When abundant data is available, the sgjmiskdestimator
typically outperforms all other methods, but weighted ML yields quite comparatiues.

When the model set includes the true posterior, the threshold-shifted phoagh is optimal.
This naturally brings us to the following question: why not employ a rich moele{fer example,
a multi-layer neural network), estimate its parameters using ML, and thentlshithreshold by
the log of the misclassification cost ratio? With an infinite amount of training daares sure to
arrive at the lowest attainable risk. However, there are a few reagonthis procedure may not be
desirable: a rich model set consists of many parameters, which in turmeggularge amount of
training data to prevent over-fitting. From the so-cakédictural risk minimizatiorprinciple, it is
well-known that a simpler model set yields empirical risks that are closer trubeisk (Vapnik,
1998). Moreover, the optimality of the ML solution is not guaranteed for isefeamount of data.
Thus, rates of convergence are key to determining the best approach.

In general, the choice of model complexity hinges upon several fadteesdimensionality of
the feature space in relation to the number of available examples, the sigmaikéoratio, and also
the skew in class prevalence. For example, in applications involving a narexpensive class,
the key is to yield accurate decisions for this infrequent class. If the nuofbsuch examples
is low, then even if the number of overall examples is high, a complex model ®ileiglly be
undesirable. In other words, the effective sample size is closer to theemwhbostly examples
than the entire sample sidé Consequently, the number of free parameters needs to be limited to
prevent overfitting. The design issue in cost-sensitive learning is thusbhbet to use these few
degrees of freedom: whether to “prioritize” correct decisions on tletlyctraining examples, or
rather to “spend” the degrees of freedom on achieving the best model fi

The results with Gaussian data presented above appear to indicate thgtrtbelal risk min-
imizer tends to the true minimum risk model given enough data. However, théntediylL esti-
mator provides a tight upper bound on the sigmoidal empirical risk and thusatiton is not far
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from optimal. Given that the negative weighted likelihood is convex, weightedhus becomes
the preferred cost-sensitive technique.

Lastly, as seen in Figure 2, both the opportunity and the challenge in cusitigelearning lies
in the ability to estimate the minimum risk model with limited data. Thus, the focus goingfdrw
should be on sparse (i.e., with few examples relative to the dimensionality oé#teré space)
inference of the minimum risk classifier.

6. Conclusion

This paper has elucidated the role of the specification of the model set imahlem of learning
with asymmetric costs or class prevalences. It was shown that in the gagaoddel family includ-
ing the true posterior, thresholding the ML solution is guaranteed to asym{iiotigaimize risk.
In this case, cost-sensitive learning is synonymous with threshold adjust@erthe other hand,
with a misspecified model, the risk minimizing solution is a function of the misclassificatish
ratios, and thresholding the ML estimate is sub-optimal. A novel estimator basadigmoidal
estimation of the empirical risk was presented and shown to outperfornectioral techniques
provided enough data; however, the negative weighted log likelihoodanagtically and empiri-
cally shown to tightly upper bound the sigmoidal loss. Thus, we advocatéddaveighted ML as
the preferred cost-sensitive learning technique.
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Appendix A. MATLAB Code for Weighted Maximum Likelihood

Provided below is a basic MATLAB implementation of the weighted ML approado$t-sensitive
learning using iteratively reweighted weighted least squares. For a rata#ed version as well as
implementations of thresholded ML and sigmoidal risk minimization, please refgptitbme.
ccny.cuny.edu/faculty/Iparra/cost

function v = wml(x,y,c,lambda)

% x - N-by-D matrix of input samples \in (-inf,inf)

% y - N-by-1 vector of binary labels \in {0,1}

% c - N-by-1 vector of costs \in (0,inf)

% lambda - regularization parameter \in (0,inf) (defaults t 0 0)
% v - v(1:D) normal to separating hyperplane, v(D+1) thresho ld
% (c) Lucas C. Parra, Jacek P. Dmochowski
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if nargin<4; lambda=0; end;

[N,D]=size(x);
s = std(x); x = x.Jrepmat(s,[N 1]);
X = [x ones(N,1)];
v = zeros(D+1,1);
lambda = [0.5*lambda*ones(1,D) 0]’
while 1

vold=v;

mu = exp(x*v - log(1+exp(x*v)));

w = ( mu.X(1-mu) ).*c;

e = (y - mu).’c;

grad = x*e - lambda .* v;

inc = inv(x*(repmat(w,1,D+1).*x)+diag(lambda)) * grad;

vV =V + inc;

if norm(vold) & subspace(v,vold)<10°-10, break, end;
end;
v(l:end-1) = v(l:end-1)./s’;
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