Remotely Supervised Transcranial Direct Current Stimulation Increases the Benefit of At-Home Cognitive Training in Multiple Sclerosis

Neuromodulation. 2017 Feb 22. doi: 10.1111/ner.12583. [Epub ahead of print]
PMID: 28225155

Leigh Charvet, PhD; Michael Shaw, BS; Bryan Dobbs, MS; Ariana Frontario, BS; Kathleen Sherman, MS; Marom Bikson, PhD; Abhishek Datta, PhD; Lauren Krupp, MD; Esmail Zeinapour, MS; Margaret Kasschau, BS

Full paper PDF: 10.1111@ner.12583

Objective: To explore the efficacy of remotely-supervised transcranial direct current stimulation (RS-tDCS) paired with cognitive training (CT) exercise in participants with multiple sclerosis (MS). Methods: In a feasibility study of RS-tDCS in MS, participants completed ten sessions of tDCS paired with CT (1.5 mA 3 20 min, dorsolateral prefrontal cortex montage). RS-tDCS participants were compared to a control group of adults with MS who underwent ten 20-min CT sessions through the same remotely supervised procedures. Cognitive outcomes were tested by composite scores measuring change in performance on standard tests (Brief International Cognitive Assessment in MS or BICAMS), basic attention (ANT-I Orienting and Attention Networks, Cogstate Detection), complex attention (ANT-I Executive Network, Cogstate Identification and One-Back), and intra-individual response variability (ANT-I and Cogstate identification; sensitive markers of disease status). Results: After ten sessions, the tDCS group (n 5 25) compared to the CT only group (n 5 20) had significantly greater improvement in complex attention (p 5 0.01) and response variability (p 5 0.01) composites. The groups did not differ in measures of basic attention (p 5 0.95) or standard cognitive measures (p 5 0.99). Conclusions: These initial findings indicate benefit for RS-tDCS paired with CT in MS. Exploratory analyses indicate that the earliest tDCS cognitive benefit is seen in complex attention and response variability. Telerehabilitation using RS-tDCS combined with CT may lead to improved outcomes in MS.

Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.
Chen CF, Bikson M, Chou LW, Shan C, Khadka N, Chen WS, Fregni F.
Nature Sci Rep. 2017 Mar 3;7:43619. doi: 10.1038/srep43619.
PMID: 28256638  Download Full Paper: srep43619

Abstract: It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

Screen Shot 2017-03-05 at 12.35.31 PM

 Scientists, entrepreneurs in Chicago area tackle ‘brain hacking’

March 3, 2017, by Ted Gregory

Link to article

Selection: “Marom Bikson is optimistic and pragmatic. A biomedical engineering professor and co-director of Neural Engineering at the City College of New York, Bikson said it is clear that tDCS can change the brain. Many prospective users are unwilling to wait for lengthy human trials and related research before trying the technology.

“Among scientists who are incredulous or skeptical, the concern is often that we’re moving too fast,” Bikson said. But people who are suffering from depression, chronic pain and cognitive decline “have a different time scale,” he said. “They don’t have 10 years, and I don’t blame them for looking for alternatives.”


Shown equipment by Soterix Medical.



Fall 2016 Seminar Series Fall 2016 Seminar Series Department of Biomedical Engineering Wednesday, Nov. 30 @ 3PM in Steinman Hall Rm 402

Patient-centric innovation intersection

Dr. Hugo Caicedo

Janssen-Johnson & Johnson Pharmaceutical R&D

Abstract: The current FDA-based roadmap to drug and product development as well as regulatory decision- making and labeling, is based on four Clinical outcome assessments (COAs): Patient-reported outcome (PRO) measures, Clinician-reported outcome (ClinRO) measures, Observer-reported outcome (ObsRO) measures, and Performance outcome (PerfO) measures. In general, COAs are used to determine whether or not a therapy has demonstrated a net clinical benefit in a disease or health condition, in other words COAs assess safety and efficacy of a therapy. Under these conditions, individuals are subjected to “adequate and well-controlled studies”. The gap, however, is that in real life patients, in their natural environments, are under neither adequate nor well-controlled conditions, which limits both our capacity to understand the patient experience and our ability to develop innovated & targeted healthcare solutions. Additionally, current highly homogeneous and randomized clinical trials (RCTs) do not shed light on patient adherence to those therapies; about 50% of the patients with chronic diseases do not comply with medication therapy. During my presentation, I will talk about how three paradigms (Real World Evidence (RWE), Digital Analytics and Design Thinking) can converge and form a model that I created, the “Patient-centric innovation intersection”, to enable actionable insights for the development of targeted healthcare solutions, with particular focus in Diabetes therapy adherence.

Biosketch: Dr. Hugo Caicedo is a scientist subject matter expert in microfluidics, biomedical engineering and consumer healthcare at Janssen-Johnson & Johnson Pharmaceutical R&D in the Philadelphia area. There, he conducts preclinical research on drug discovery as well as strategic design on healthcare innovation to translate relevant science and technology into high-value partnerships that enable differentiated healthcare solutions. Currently, he is also a scholar trainee at the Corporate Sustainability and Innovation program at Harvard University. Dr. Caicedo holds a B.S in Electronics Engineering from the Universidad del Valle (Cali-Colombia) and a Ph.D. in Biomedical Engineering from the University of Illinois at Chicago (UIC). He was the recipient of MIT, Bogazicy University, Antalya University (Turkey) and UniversitéPierre and Marie Curie (France) pre-doctoral fellowships as well as one Harvard-MIT/HST post-doctoral fellowship. Dr. Caicedo has multiple publications including several peer-reviewed papers, two book chapters and a provisional patent application. Additionally, he has been awarded more than 20 recognition awards including: 2011, Ph.D student, African Colombian of the year in academia; 2012, Mayor’s Civic Merit Medal of Cali given directly by the President of Colombia; 2012, Distinguished PhD Student speaker at the 3rd US-Turkey Advanced Study Institute on Global Healthcare Challenges; 2015, BMES4SUCCESS, highlighted by the US Biomedical Engineering Society, as one of three —and the only member from industry— successful earlier career members in biomedical engineering; and 2016 Honorable Speaker invitation at the Biotechnology World Convention in Sao Paulo, Brazil.

Continue reading

Dr. Marom Bikson lectures at the National Institutes of Health (NIH) National Cancer Institute (NCI)

6/13/2016 NCI Shady Grove Campus Room TE406 9:30 AM

Medical Device Device for Innovative Cancer Therapies: Preclinical Evaluation, Clinical Trial Preparation, and a Prospective Clinical Trial of Intraoperative Real-Time Tissue Oxygenation Monitoring by Wireless Pulse Oximetry

Screen Shot 2016-06-13 at 11.21.15 AM